5,441 research outputs found

    Observers for compressible Navier-Stokes equation

    Full text link
    We consider a multi-dimensional model of a compressible fluid in a bounded domain. We want to estimate the density and velocity of the fluid, based on the observations for only velocity. We build an observer exploiting the symmetries of the fluid dynamics laws. Our main result is that for the linearised system with full observations of the velocity field, we can find an observer which converges to the true state of the system at any desired convergence rate for finitely many but arbitrarily large number of Fourier modes. Our one-dimensional numerical results corroborate the results for the linearised, fully observed system, and also show similar convergence for the full nonlinear system and also for the case when the velocity field is observed only over a subdomain

    Approximated Lax Pairs for the Reduced Order Integration of Nonlinear Evolution Equations

    Get PDF
    A reduced-order model algorithm, called ALP, is proposed to solve nonlinear evolution partial differential equations. It is based on approximations of generalized Lax pairs. Contrary to other reduced-order methods, like Proper Orthogonal Decomposition, the basis on which the solution is searched for evolves in time according to a dynamics specific to the problem. It is therefore well-suited to solving problems with progressive front or wave propagation. Another difference with other reduced-order methods is that it is not based on an off-line / on-line strategy. Numerical examples are shown for the linear advection, KdV and FKPP equations, in one and two dimensions

    Stochastic and deterministic models for age-structured populations with genetically variable traits

    Full text link
    Understanding how stochastic and non-linear deterministic processes interact is a major challenge in population dynamics theory. After a short review, we introduce a stochastic individual-centered particle model to describe the evolution in continuous time of a population with (continuous) age and trait structures. The individuals reproduce asexually, age, interact and die. The 'trait' is an individual heritable property (d-dimensional vector) that may influence birth and death rates and interactions between individuals, and vary by mutation. In a large population limit, the random process converges to the solution of a Gurtin-McCamy type PDE. We show that the random model has a long time behavior that differs from its deterministic limit. However, the results on the limiting PDE and large deviation techniques \textit{\`a la} Freidlin-Wentzell provide estimates of the extinction time and a better understanding of the long time behavior of the stochastic process. This has applications to the theory of adaptive dynamics used in evolutionary biology. We present simulations for two biological problems involving life-history trait evolution when body size is plastic and individual growth is taken into account.Comment: This work is a proceeding of the CANUM 2008 conferenc
    corecore