16 research outputs found

    Sparse Semi-supervised Learning Using Conjugate Functions

    Get PDF
    In this paper, we propose a general framework for sparse semi-supervised learning, which concerns using a small portion of unlabeled data and a few labeled data to represent target functions and thus has the merit of accelerating function evaluations when predicting the output of a new example. This framework makes use of Fenchel-Legendre conjugates to rewrite a convex insensitive loss involving a regularization with unlabeled data, and is applicable to a family of semi-supervised learning methods such as multi-view co-regularized least squares and single-view Laplacian support vector machines (SVMs). As an instantiation of this framework, we propose sparse multi-view SVMs which use a squared ε-insensitive loss. The resultant optimization is an inf-sup problem and the optimal solutions have arguably saddle-point properties. We present a globally optimal iterative algorithm to optimize the problem. We give the margin bound on the generalization error of the sparse multi-view SVMs, and derive the empirical Rademacher complexity for the induced function class. Experiments on artificial and real-world data show their effectiveness. We further give a sequential training approach to show their possibility and potential for uses in large-scale problems and provide encouraging experimental results indicating the efficacy of the margin bound and empirical Rademacher complexity on characterizing the roles of unlabeled data for semi-supervised learnin

    Posterior Regularization for Structured Latent Varaible Models

    Get PDF
    We present posterior regularization, a probabilistic framework for structured, weakly supervised learning. Our framework efficiently incorporates indirect supervision via constraints on posterior distributions of probabilistic models with latent variables. Posterior regularization separates model complexity from the complexity of structural constraints it is desired to satisfy. By directly imposing decomposable regularization on the posterior moments of latent variables during learning, we retain the computational efficiency of the unconstrained model while ensuring desired constraints hold in expectation. We present an efficient algorithm for learning with posterior regularization and illustrate its versatility on a diverse set of structural constraints such as bijectivity, symmetry and group sparsity in several large scale experiments, including multi-view learning, cross-lingual dependency grammar induction, unsupervised part-of-speech induction, and bitext word alignment

    The Power Landmark Vector Learning Framework

    Get PDF
    Kernel methods have recently become popular in bioinformatics machine learning. Kernel methods allow linear algorithms to be applied to non-linear learning situations. By using kernels, non-linear learning problems can benefit from the statistical and runtime stability traditionally enjoyed by linear learning problems. However, traditional kernel learning frameworks use implicit feature spaces whose mathematical properties were hard to characterize. In order to address this problem, recent research has proposed a vector learning framework that uses landmark vectors which are unlabeled vectors belonging to the same distribution and the same input space as the training vectors. This thesis introduces an extension to the landmark vector learning framework that allows it to utilize two new classes of landmark vectors in the input space. This augmented learning framework is named the power landmark vector learning framework. A theoretical description of the power landmark vector learning framework is given along with proofs of new theoretical results. Experimental results show that the performance of the power landmark vector learning framework is comparable to traditional kernel learning frameworks
    corecore