2 research outputs found

    A One-Pass Private Sketch for Most Machine Learning Tasks

    Full text link
    Differential privacy (DP) is a compelling privacy definition that explains the privacy-utility tradeoff via formal, provable guarantees. Inspired by recent progress toward general-purpose data release algorithms, we propose a private sketch, or small summary of the dataset, that supports a multitude of machine learning tasks including regression, classification, density estimation, near-neighbor search, and more. Our sketch consists of randomized contingency tables that are indexed with locality-sensitive hashing and constructed with an efficient one-pass algorithm. We prove competitive error bounds for DP kernel density estimation. Existing methods for DP kernel density estimation scale poorly, often exponentially slower with an increase in dimensions. In contrast, our sketch can quickly run on large, high-dimensional datasets in a single pass. Exhaustive experiments show that our generic sketch delivers a similar privacy-utility tradeoff when compared to existing DP methods at a fraction of the computation cost. We expect that our sketch will enable differential privacy in distributed, large-scale machine learning settings.Comment: 10 pages, 4 figure

    STORM: Foundations of End-to-End Empirical Risk Minimization on the Edge

    Full text link
    Empirical risk minimization is perhaps the most influential idea in statistical learning, with applications to nearly all scientific and technical domains in the form of regression and classification models. To analyze massive streaming datasets in distributed computing environments, practitioners increasingly prefer to deploy regression models on edge rather than in the cloud. By keeping data on edge devices, we minimize the energy, communication, and data security risk associated with the model. Although it is equally advantageous to train models at the edge, a common assumption is that the model was originally trained in the cloud, since training typically requires substantial computation and memory. To this end, we propose STORM, an online sketch for empirical risk minimization. STORM compresses a data stream into a tiny array of integer counters. This sketch is sufficient to estimate a variety of surrogate losses over the original dataset. We provide rigorous theoretical analysis and show that STORM can estimate a carefully chosen surrogate loss for the least-squares objective. In an exhaustive experimental comparison for linear regression models on real-world datasets, we find that STORM allows accurate regression models to be trained
    corecore