2 research outputs found

    Benchmarking Hebbian learning rules for associative memory

    Full text link
    Associative memory or content addressable memory is an important component function in computer science and information processing and is a key concept in cognitive and computational brain science. Many different neural network architectures and learning rules have been proposed to model associative memory of the brain while investigating key functions like pattern completion and rivalry, noise reduction, and storage capacity. A less investigated but important function is prototype extraction where the training set comprises pattern instances generated by distorting prototype patterns and the task of the trained network is to recall the correct prototype pattern given a new instance. In this paper we characterize these different aspects of associative memory performance and benchmark six different learning rules on storage capacity and prototype extraction. We consider only models with Hebbian plasticity that operate on sparse distributed representations with unit activities in the interval [0,1]. We evaluate both non-modular and modular network architectures and compare performance when trained and tested on different kinds of sparse random binary pattern sets, including correlated ones. We show that covariance learning has a robust but low storage capacity under these conditions and that the Bayesian Confidence Propagation learning rule (BCPNN) is superior with a good margin in all cases except one, reaching a three times higher composite score than the second best learning rule tested.Comment: 24 pages, 9 figure

    Design and Implementation of FPGA-based Hardware Accelerator for Bayesian Confidence Propagation Neural Network

    Get PDF
    The Bayesian confidence propagation neural network (BCPNN) has been widely used for neural computation and machine learning domains. However, the current implementations of BCPNN are not computationally efficient enough, especially in the update of synaptic state variables. This thesis proposes a hardware accelerator for the training and inference process of BCPNN. In the hardware design, several techniques are employed, including a hybrid update mechanism, customized LUT-based design for exponential operations, and optimized design that maximizes parallelism. The proposed hardware accelerator is implemented on an FPGA device. The results show that the computing speed of the accelerator can improve the CPU counterpart by two orders of magnitude. In addition, the computational modules of the accelerator can be reused to reduce hardware overheads while achieving comparable computing performance. The accelerator's potential to facilitate the efficient implementation for large-scale BCPNN neural networks opens up the possibility to realize higher-level cognitive phenomena, such as associative memory and working memory
    corecore