2 research outputs found

    A Novel method for the design of 2-DOF Parallel mechanisms for machining applications

    Full text link
    Parallel Kinematic Mechanisms (PKM) are interesting alternative designs for machine tools. A design method based on velocity amplification factors analysis is presented in this paper. The comparative study of two simple two-degree-of-freedom PKM dedicated to machining applications is led through this method: the common desired properties are the largest square Cartesian workspace for given kinetostatic performances. The orientation and position of the Cartesian workspace are chosen to avoid singularities and to produce the best ratio between Cartesian workspace size and mechanism size. The machine size of each resulting design is used as a comparative criterion

    The Optimal Design of Three Degree-of-Freedom Parallel Mechanisms for Machining Applications

    Full text link
    The subject of this paper is the optimal design of a parallel mechanism intended for three-axis machining applications. Parallel mechanisms are interesting alternative designs in this context but most of them are designed for three- or six-axis machining applications. In the last case, the position and the orientation of the tool are coupled and the shape of the workspace is complex. The aim of this paper is to use a simple parallel mechanism with two-degree-of-freedom (dof) for translational motions and to add one leg to have one-dof rotational motion. The kinematics and singular configurations are studied as well as an optimization method. The three-degree-of-freedom mechanisms analyzed in this paper can be extended to four-axis machines by adding a fourth axis in series with the first two
    corecore