2 research outputs found

    Fingerprints: Fixed Length Representation via Deep Networks and Domain Knowledge

    Full text link
    We learn a discriminative fixed length feature representation of fingerprints which stands in contrast to commonly used unordered, variable length sets of minutiae points. To arrive at this fixed length representation, we embed fingerprint domain knowledge into a multitask deep convolutional neural network architecture. Empirical results, on two public-domain fingerprint databases (NIST SD4 and FVC 2004 DB1) show that compared to minutiae representations, extracted by two state-of-the-art commercial matchers (Verifinger v6.3 and Innovatrics v2.0.3), our fixed-length representations provide (i) higher search accuracy: Rank-1 accuracy of 97.9% vs. 97.3% on NIST SD4 against a gallery size of 2000 and (ii) significantly faster, large scale search: 682,594 matches per second vs. 22 matches per second for commercial matchers on an i5 3.3 GHz processor with 8 GB of RAM

    Learning a Fixed-Length Fingerprint Representation

    Full text link
    We present DeepPrint, a deep network, which learns to extract fixed-length fingerprint representations of only 200 bytes. DeepPrint incorporates fingerprint domain knowledge, including alignment and minutiae detection, into the deep network architecture to maximize the discriminative power of its representation. The compact, DeepPrint representation has several advantages over the prevailing variable length minutiae representation which (i) requires computationally expensive graph matching techniques, (ii) is difficult to secure using strong encryption schemes (e.g. homomorphic encryption), and (iii) has low discriminative power in poor quality fingerprints where minutiae extraction is unreliable. We benchmark DeepPrint against two top performing COTS SDKs (Verifinger and Innovatrics) from the NIST and FVC evaluations. Coupled with a re-ranking scheme, the DeepPrint rank-1 search accuracy on the NIST SD4 dataset against a gallery of 1.1 million fingerprints is comparable to the top COTS matcher, but it is significantly faster (DeepPrint: 98.80% in 0.3 seconds vs. COTS A: 98.85% in 27 seconds). To the best of our knowledge, the DeepPrint representation is the most compact and discriminative fixed-length fingerprint representation reported in the academic literature.Comment: to appear in IEEE Transactions on Pattern Analysis and Machine Intelligenc
    corecore