3,932 research outputs found

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods

    Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition

    Full text link
    Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise during the acquisition process, e.g., Gaussian noise, impulse noise, dead lines, stripes, and many others. Such complex noise could degrade the quality of the acquired HSIs, limiting the precision of the subsequent processing. In this paper, we present a novel tensor-based HSI restoration approach by fully identifying the intrinsic structures of the clean HSI part and the mixed noise part respectively. Specifically, for the clean HSI part, we use tensor Tucker decomposition to describe the global correlation among all bands, and an anisotropic spatial-spectral total variation (SSTV) regularization to characterize the piecewise smooth structure in both spatial and spectral domains. For the mixed noise part, we adopt the â„“1\ell_1 norm regularization to detect the sparse noise, including stripes, impulse noise, and dead pixels. Despite that TV regulariztion has the ability of removing Gaussian noise, the Frobenius norm term is further used to model heavy Gaussian noise for some real-world scenarios. Then, we develop an efficient algorithm for solving the resulting optimization problem by using the augmented Lagrange multiplier (ALM) method. Finally, extensive experiments on simulated and real-world noise HSIs are carried out to demonstrate the superiority of the proposed method over the existing state-of-the-art ones.Comment: 15 pages, 20 figure

    Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements

    Full text link
    Background subtraction has been a fundamental and widely studied task in video analysis, with a wide range of applications in video surveillance, teleconferencing and 3D modeling. Recently, motivated by compressive imaging, background subtraction from compressive measurements (BSCM) is becoming an active research task in video surveillance. In this paper, we propose a novel tensor-based robust PCA (TenRPCA) approach for BSCM by decomposing video frames into backgrounds with spatial-temporal correlations and foregrounds with spatio-temporal continuity in a tensor framework. In this approach, we use 3D total variation (TV) to enhance the spatio-temporal continuity of foregrounds, and Tucker decomposition to model the spatio-temporal correlations of video background. Based on this idea, we design a basic tensor RPCA model over the video frames, dubbed as the holistic TenRPCA model (H-TenRPCA). To characterize the correlations among the groups of similar 3D patches of video background, we further design a patch-group-based tensor RPCA model (PG-TenRPCA) by joint tensor Tucker decompositions of 3D patch groups for modeling the video background. Efficient algorithms using alternating direction method of multipliers (ADMM) are developed to solve the proposed models. Extensive experiments on simulated and real-world videos demonstrate the superiority of the proposed approaches over the existing state-of-the-art approaches.Comment: To appear in IEEE TI

    Closed Form Effective Conformal Anomaly Actions in D≥\geq4

    Get PDF
    I present, in any D≥\geq4, closed-form type B conformal anomaly effective actions incorporating the logarithmic scaling cutoff dependence that generates these anomalies. Their construction is based on a novel class of Weyl-invariant tensor operators. The only known type A actions in D≥\geq4 are extensions of the Polyakov integral in D=2; despite contrary appearances, we show that their nonlocality does not conflict with general anomaly requirements. They are, however, physically unsatisfactory, prompting a brief attempt at better versions.Comment: 8 pages. Improved discussion of type A actions. Some references adde

    Exact solutions and spacetime singularities in nonlocal gravity

    Get PDF
    We give here a list of exact classical solutions of a large class of weakly nonlocal theories of gravity, which are unitary and super-renormalizable (or finite) at quantum level. It is explicitly shown that flat and Ricci-flat spacetimes as well as maximally symmetric manifolds are exact solutions of the equation of motion. Therefore, well-known physical spacetimes like Schwarzschild, Kerr, (Anti-) de Sitter serve as solutions for standard matter content. In dimension higher than four we can also have Anti-de Sitter solutions in the presence of positive cosmological constant. We pedagogically show how to obtain these exact solutions. Furthermore, for another version of the theory, written in the Weyl basis, Friedmann-Robertson-Walker (FRW) spacetimes are also exact solutions, when the matter content is given by conformal matter (radiation). We also comment on the presence of singularities and possible resolution of them in finite and conformally invariant theories. "Delocalization" is proposed as a way to solve the black hole singularity problem. In order to solve the problem of cosmological singularities it seems crucial to have a conformally invariant or asymptotically free quantum gravitational theory.Comment: 33 page

    Trace Anomaly, Massless Scalars and the Gravitational Coupling of QCD

    Full text link
    The anomalous effective action describing the coupling of gravity to a non-abelian gauge theory can be determined by a variational solution of the anomaly equation, as shown by Riegert long ago. It is given by a nonlocal expression, with the nonlocal interaction determined by the Green's function of a conformally covariant operator of fourth order. In recent works it has been shown that this interaction is mediated by a simple pole in an expansion around a Minkowski background, coupled in the infrared in the massless fermion limit. This result relies on the local formulation of the original action in terms of two auxiliary fields, one physical scalar and one ghost, which take the role of massless composite degrees of freedom. In the gravity case, the two scalars have provided ground in favour of some recent proposals of an infrared approach to the solution of the dark energy problem, entirely based on the behaviour of the vacuum energy at the QCD phase transition. As a test of this general result, we perform a complete one-loop computation of the effective action describing the coupling of a non-abelian gauge theory to gravity. We confirm the appearance of an anomaly pole which contributes to the trace part of the TJJTJJ correlator and of extra poles in its trace-free part, in the quark and gluon sectors, describing the coupling of the energy momentum tensor (TT) to two non abelian gauge currents (JJ).Comment: 25 pages, 9 figures. Revised final version, to be published on Phys. Rev.
    • …
    corecore