248 research outputs found

    A simulation-based methodology for aiding advanced driver assistance systems hazard analysis and risk assessment

    Get PDF
    The increasing complexity of the Advanced Driver Assistance Systems (ADAS) is making more difficult to perform the Hazard Analysis and Risk Assessment (HARA). These items require high-performance Electronic Control Units (ECU) with extensive software functionalities. To correctly operate they interact with the driver, environment and other vehicle functions through high-speed in-vehicle networks, as well as a wide range of sensors and actuators. As a result, they implement complex behaviors whose outcome in presence of faults is not trivial to identify and classify as requested by the concept phase included in the most recent functional safety standards. In this paper we present a simulation-based methodology to perform the HARA of a vehicle function by mixing the usual industrial approach, based on the designers' knowledge, with one that makes use of a vehicle-level simulator. The simulation-based approach provides an automatic and systematic method to assess the complex interaction of the item under analysis with other vehicle functions in possibly complex operational situations, thus making the prediction of hazards easier. We choose to demonstrate the approach by applying it to a well-known automotive industry case study: an Advanced Emergency Braking System (AEBS). In this way, it is possible to analyze the effects of the function provided by the item, keeping into account the simulations results and comparing them to similar situations analysis available in literature. Thanks to the obtained simulation-based results, safety engineers can formulate a more objective hypothesis, in particular during the hazard classification subphase

    Safety assessment of automated vehicle functions by simulation-based fault injection

    Get PDF
    As automated driving vehicles become more sophisticated and pervasive, it is increasingly important to assure its safety even in the presence of faults. This paper presents a simulation-based fault injection approach (Sabotage) aimed at assessing the safety of automated vehicle functions. In particular, we focus on a case study to forecast fault effects during the model-based design of a lateral control function. The goal is to determine the acceptable fault detection interval for permanent faults based on the maximum lateral error and steering saturation. In this work, we performed fault injection simulations to derive the most appropriate safety goals, safety requirements, and fault handling strategies at an early concept phase of an ISO 26262-compliant safety assessment process.The authors have partially received funding from the ECSEL JU AMASS project under H2020 grant agreement No 692474 and from MINETUR (Spain)

    A Novel ISO 26262-Compliant Test Bench to Assess the Diagnostic Coverage of Software Hardening Techniques against Digital Components Random Hardware Failures

    Get PDF
    This paper describes a novel approach to assess detection mechanisms and their diagnostic coverage, implemented using embedded software, designed to identify random hardware failures affecting digital components. In the literature, many proposals adopting fault injection methods are available, with most of them focusing on transient faults and not considering the functional safety standards requirements. This kind of proposal can benefit developers involved in the automotive market, where strict safety and cost requirements make the adoption of software-only strategies convenient. Hence, we have focused our efforts on compliance with the ISO 26262 automotive functional safety standard. The approach concerns permanent faults affecting microcontrollers and it provides a mapping between the failure mode described in part 11 of the Standard and the chosen fault models. We propose a test bench designed to inject permanent failures into an emulated microcontroller and determine which of them are detected by the embedded software. The main contribution of this paper is a novel fault injection manager integrated with the open-source software GCC, GDB, and QEMU. This test bench manages all the assessment phases, from fault generation to fault injection and the ISA emulation management, up to the classification of the simulation results

    Towards Vehicle-Level Simulator Aided Failure Mode, Effect, and Diagnostic Analysis of Automotive Power Electronics Items

    Get PDF
    The increasing demand for Electronic Control Units able to perform safety-relevant tasks leads the automotive industry to find novel verification methodologies, capable to decrease the time-to-market and, at the same time, to improve the quality of the assessment. The ISO26262:2018 automotive functional safety standard requires to follow a strict development process, compliant with its “safety lifecycle”. It includes all the phases of the item life, from the concept to the decommissioning. The phase that places most difficulties about its objectivity and repeatability is the hardware/software integration verification since, usually, the software is in charge to mitigate the effects of some possible hardware failures. This paper proposes a novel technique, based on a simulation-based approach, to aid the designers during the Failure Mode, Effect, and Diagnostic Analysis (FMEDA). We consider a power electronics module, to be embedded into electric vehicles powertrains, as a challenging practical example. We performed some tests on it, considering a rear traction car with two independent electric motors, one per each wheel. This system, to allow the vehicle to curve, has to act like a differential gear. Hence, it has a strong safety impact on the driveability of the car. All the involved components have been simulated propagating their behaviours up to the entire vehicle. Due the strong coupling between item failures and vehicle dynamics, a structured way based on coupling fault injection with vehicle dynamic simulation is desirable

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    Risk Management Core -- Towards an Explicit Representation of Risk in Automated Driving

    Full text link
    While current automotive safety standards provide implicit guidance on how unreasonable risk can be avoided, manufacturers are required to specify risk acceptance criteria for automated driving systems (SAE Level 3+). However, the 'unreasonable' level of risk of automated driving systems (SAE Level 3+) is not yet concisely defined. Solely applying current safety standards to such novel systems could potentially not be sufficient for their acceptance. As risk is managed with implicit knowledge about safety measures in existing automotive standards, an explicit alignment with risk acceptance criteria is challenging. Hence, we propose an approach for an explicit representation and management of risk, which we call the Risk Management Core. The proposal of this process framework is based on requirements elicited from current safety standards and apply the Risk Management Core to the task of specifying safe behavior for an automated driving system in an example scenario.Comment: 16 pages, 6 figure

    Novel Validation Techniques for Autonomous Vehicles

    Get PDF
    The automotive industry is facing challenges in producing electrical, connected, and autonomous vehicles. Even if these challenges are, from a technical point of view, independent from each other, the market and regulatory bodies require them to be developed and integrated simultaneously. The development of autonomous vehicles implies the development of highly dependable systems. This is a multidisciplinary activity involving knowledge from robotics, computer science, electrical and mechanical engineering, psychology, social studies, and ethics. Nowadays, many Advanced Driver Assistance Systems (ADAS), like Emergency Braking System, Lane Keep Assistant, and Park Assist, are available. Newer luxury cars can drive by themselves on highways or park automatically, but the end goal is to develop completely autonomous driving vehicles, able to go by themselves, without needing human interventions in any situation. The more vehicles become autonomous, the greater the difficulty in keeping them reliable. It enhances the challenges in terms of development processes since their misbehaviors can lead to catastrophic consequences and, differently from the past, there is no more a human driver to mitigate the effects of erroneous behaviors. Primary threats to dependability come from three sources: misuse from the drivers, design systematic errors, and random hardware failures. These safety threats are addressed under various aspects, considering the particular type of item to be designed. In particular, for the sake of this work, we analyze those related to Functional Safety (FuSa), viewed as the ability of a system to react on time and in the proper way to the external environment. From the technological point of view, these behaviors are implemented by electrical and electronic items. Various standards to achieve FuSa have been released over the years. The first, released in 1998, was the IEC 61508. Its last version is the one released in 2010. This standard defines mainly: • a Functional Safety Management System (FSMS); • methods to determine a Safety Integrated Level (SIL); • methods to determine the probability of failures. To adapt the IEC61508 to the automotive industry’s peculiarity, a newer standard, the ISO26262, was released in 2011 then updated in 2018. This standard provides guidelines about FSMS, called in this case Safety Lifecycle, describing how to develop software and hardware components suitable for functional safety. It also provides a different way to compute the SIL, called in this case Automotive SIL (ASIL), allowing us to consider the average driver’s abilities to control the vehicle in case of failures. Moreover, it describes a way to determine the probability of random hardware failures through Failure Mode, Effects, and Diagnostic Analysis (FMEDA). This dissertation contains contributions to three topics: • random hardware failures mitigation; • improvementoftheISO26262HazardAnalysisandRiskAssessment(HARA); • real-time verification of the embedded software. As the main contribution of this dissertation, I address the safety threats due to random hardware failures (RHFs). For this purpose, I propose a novel simulation-based approach to aid the Failure Mode, Effects, and Diagnostic Analysis (FMEDA) required by the ISO26262 standard. Thanks to a SPICE-level model of the item, and the adoption of fault injection techniques, it is possible to simulate its behaviors obtaining useful information to classify the various failure modes. The proposed approach evolved from a mere simulation of the item, allowing only an item-level failure mode classification up to a vehicle-level analysis. The propagation of the failure modes’ effects on the whole vehicle enables us to assess the impacts on the vehicle’s drivability, improving the quality of the classifications. It can be advantageous where it is difficult to predict how the item-level misbehaviors propagate to the vehicle level, as in the case of a virtual differential gear or the mobility system of a robot. It has been chosen since it can be considered similar to the novel light vehicles, such as electric scooters, that are becoming more and more popular. Moreover, my research group has complete access to its design since it is realized by our university’s DIANA students’ team. When a SPICE-level simulation is too long to be performed, or it is not possible to develop a complete model of the item due to intellectual property protection rules, it is possible to aid this process through behavioral models of the item. A simulation of this kind has been performed on a mobile robotic system. Behavioral models of the electronic components were used, alongside mechanical simulations, to assess the software failure mitigation capabilities. Another contribution has been obtained by modifying the main one. The idea was to make it possible to aid also the Hazard Analysis and Risk Assessment (HARA). This assessment is performed during the concept phase, so before starting to design the item implementation. Its goal is to determine the hazards involved in the item functionality and their associated levels of risk. The end goal of this phase is a list of safety goals. For each one of these safety goals, an ASIL has to be determined. Since HARA relies only on designers expertise and knowledge, it lacks in objectivity and repeatability. Thanks to the simulation results, it is possible to predict the effects of the failures on the vehicle’s drivability, allowing us to improve the severity and controllability assessment, thus improving the objectivity. Moreover, since simulation conditions can be stored, it is possible, at any time, to recheck the results and to add new scenarios, improving the repeatability. The third group of contributions is about the real-time verification of embedded software. Through Hardware-In-the-Loop (HIL), a software integration verification has been performed to test a fundamental automotive component, mixed-criticality applications, and multi-agent robots. The first of these contributions is about real-time tests on Body Control Modules (BCM). These modules manage various electronic accessories in the vehicle’s body, like power windows and mirrors, air conditioning, immobilizer, central locking. The main characteristics of BCMs are the communications with other embedded computers via the car’s vehicle bus (Controller Area Network) and to have a high number (hundreds) of low-speed I/Os. As the second contribution, I propose a methodology to assess the error recovery system’s effects on mixed-criticality applications regarding deadline misses. The system runs two tasks: a critical airplane longitudinal control and a non-critical image compression algorithm. I start by presenting the approach on a benchmark application containing an instrumented bug into the lower criticality task; then, we improved it by injecting random errors inside the lower criticality task’s memory space through a debugger. In the latter case, thanks to the HIL, it is possible to pause the time domain simulation when the debugger operates and resume it once the injection is complete. In this way, it is possible to interact with the target without interfering with the simulation results, combining a full control of the target with an accurate time-domain assessment. The last contribution of this third group is about a methodology to verify, on multi-agent robots, the synchronization between two agents in charge to move the end effector of a delta robot: the correct position and speed of the end effector at any time is strongly affected by a loss of synchronization. The last two contributions may seem unrelated to the automotive industry, but interest in these applications is gaining. Mixed-criticality systems allow reducing the number of ECUs inside cars (for cost reduction), while the multi-agent approach is helpful to improve the cooperation of the connected cars with respect to other vehicles and the infrastructure. The fourth contribution, contained in the appendix, is about a machine learning application to improve the social acceptance of autonomous vehicles. The idea is to improve the comfort of the passengers by recognizing their emotions. I started with the idea to modify the vehicle’s driving style based on a real-time emotions recognition system but, due to the difficulties of performing such operations in an experimental setup, I move to analyze them offline. The emotions are determined on volunteers’ facial expressions recorded while viewing 3D representa- tions showing different calibrations. Thanks to the passengers’ emotional responses, it is possible to choose the better calibration from the comfort point of view

    Novel Validation Techniques for Autonomous Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore