6 research outputs found

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Exploring ECG Signal Analysis Techniques for Arrhythmia Detection: A Review

    Get PDF
    The heart holds paramount importance in the human body as it serves the crucial function of supplying blood and nutrients to various organs. Thus, maintaining its health is imperative. Arrhythmia, a heart disorder, arises when the heart's rhythm becomes irregular. Electrocardiogram (ECG) signals are commonly utilized for analyzing arrhythmia due to their simplicity and cost-effectiveness. The peaks observed in ECG graphs, particularly the R peak, are indicative of heart conditions, facilitating arrhythmia diagnosis. Arrhythmia is broadly categorized into Tachycardia and Bradycardia for identification purposes. This paper explores diverse techniques such as Deep Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), Support Vector Machines (SVM), Neural Network (NN) classifiers, as well as Wavelet and Time–Frequency Transform (TQWT), which have been employed over the past decade for arrhythmia detection using various datasets. The study delves into the analysis of arrhythmia classification on ECG datasets, highlighting the effectiveness of data preprocessing, feature extraction, and classification techniques in achieving superior performance in classifying ECG signals for arrhythmia detection

    Signal processing techniques for cardiovascular monitoring applications using conventional and video-based photoplethysmography

    Get PDF
    Photoplethysmography (PPG)-based monitoring devices will probably play a decisive role in healthcare environment of the future, which will be preventive, predictive, personalized and participatory. Indeed, this optical technology presents several practical advantages over gold standard methods based on electrocardiography, because PPG wearable devices can be comfortably used for long-term continuous monitoring during daily life activities. Contactless video-based PPG technique, also known as imaging photoplethysmography (iPPG), has also attracted much attention recently. In that case, the cardiac pulse is remotely measured from the subtle skin color changes resulting from the blood circulation, using a simple video camera. PPG/iPPG have a lot of potential for a wide range of cardiovascular applications. Hence, there is a substantial need for signal processing techniques to explore these applications and to improve the reliability of the PPG/iPPG-based parameters. \par A part of the thesis is dedicated to the development of robust processing schemes to estimate heart rate from the PPG/iPPG signals. The proposed approaches were built on adaptive frequency tracking algorithms that were previously developed in our group. These tools, based on adaptive band-pass filters, provide instantaneous frequency estimates of the input signal(s) with a very low time delay, making them suitable for real-time applications. In case of conventional PPG, a prior adaptive noise cancellation step involving the use of accelerometer signals was also necessary to reconstruct clean PPG signals during the regions corrupted by motion artifacts. Regarding iPPG, after comparing different regions of interest on the subject face, we hypothesized that the simultaneous use of different iPPG signal derivation methods (i.e. methods to derive the iPPG time series from the pixel values of the consecutive frames) could be advantageous. Methods to assess signal quality online and to incorporate it into instantaneous frequency estimation were also examined and successfully applied to improve system reliability. \par This thesis also explored different innovative applications involving PPG/iPPG signals. The detection of atrial fibrillation was studied. Novel features derived directly from the PPG waveforms, designed to reflect the morphological changes observed during arrhythmic episodes, were proposed and proven to be successful for atrial fibrillation detection. Arrhythmia detection and robust heart rate estimation approaches were combined in another study aimed at reducing the number of false arrhythmia alarms in the intensive care unit by exploiting signals from independent sources, including PPG. Evaluation on a hidden dataset demonstrated that the number of false alarms was drastically reduced while almost no true alarm was suppressed. Finally, other aspects of the iPPG technology were examined, such as the measurement of pulse rate variability indexes from the iPPG signals and the estimation of respiratory rate from the iPPG interbeat intervals

    Novel Low Complexity Biomedical Signal Processing Techniques for Online Applications

    Get PDF
    Biomedical signal processing has become a very active domain of research nowadays. With the advent of portable monitoring devices, from accelerometer-enabled bracelets and smart-phones to more advanced vital sign tracking body area networks, this field has been receiving unprecedented attention. Indeed, portable health monitoring can help uncover the underlying dynamics of human health in a way that has not been possible before. Several challenges have emerged however, as these devices present key differences in terms of signal acquisition and processing in comparison with conventional methods. Hardware constraints such as processing power and limited battery capacity make most established techniques unsuitable and therefore, the need for low-complexity yet robust signal processing methods has appeared. Another issue that needs to be addressed is the quality of the signals captured by these devices. Unlike in clinical scenarios, in portable health monitoring subjects are constantly performing their daily activities. Moreover, signals maybe captured from unconventional locations and subsequently, be prone to perturbations. In order to obtain reliable measures from these monitoring devices, one needs to acquire dependable signal quality measures, to avoid false alarms. Indeed, hardware limitations and low-quality signals can greatly influence the performance of portable monitoring devices. Nevertheless, most devices offer simultaneous acquisition of multiple physiological parameters, such as electrocardiogram (ECG) and photoplethysmogram (PPG). Through multi-modal signal processing the overall performance can be improved, for instance by deriving parameters such as heart rate estimation from the most reliable and uncontaminated source. This thesis is therefore, dedicated to propose novel low-complexity biomedical processing techniques for real-time/online applications. Throughout this dissertation, several bio-signals such as the ECG, PPG, and electroencephalogram (EEG) are investigated. %There is an emphasis on ECG processing techniques, as most of the bio-signals recorded today reflect information about the heart. The main contribution of this dissertation consists in two signal processing techniques: 1) a novel ECG QRS-complex detection and delineation technique, and 2) a short-term event extraction technique for biomedical signals. The former is based on a processing technique called mathematical morphology (MM), and adaptively uses subject QRS-complex amplitude- and morphological attributes for a robust detection and delineation. This method is generalized to intra-cardiac electrograms for atrial activation detection during atrial fibrillation. The second method, called the Relative-Energy algorithm, uses short- and long-term signal energies to highlight events of interest and discard unwanted activities. Collectively, the results obtained by these methods suggest that while presenting low-computational costs, they can efficiently and robustly extract biomedical events of interest. Using the relative energy algorithm, a continuous non-binary ECG signal quality index is presented. The ECG quality is determined by creating a cleaned-up version of the input ECG and calculating the correlation coefficient between the cleaned-up and the original ECG. The proposed quality index is fast and can be implemented online, making it suitable for portable monitoring scenarios

    A Novel Short-Term Event Extraction Algorithm for Biomedical Signals

    No full text
    corecore