92 research outputs found

    Exploring Robot Teleoperation in Virtual Reality

    Get PDF
    This thesis presents research on VR-based robot teleoperation with a focus on remote environment visualisation in virtual reality, the effects of remote environment reconstruction scale in virtual reality on the human-operator's ability to control the robot and human-operator's visual attention patterns when teleoperating a robot from virtual reality. A VR-based robot teleoperation framework was developed, it is compatible with various robotic systems and cameras, allowing for teleoperation and supervised control with any ROS-compatible robot and visualisation of the environment through any ROS-compatible RGB and RGBD cameras. The framework includes mapping, segmentation, tactile exploration, and non-physically demanding VR interface navigation and controls through any Unity-compatible VR headset and controllers or haptic devices. Point clouds are a common way to visualise remote environments in 3D, but they often have distortions and occlusions, making it difficult to accurately represent objects' textures. This can lead to poor decision-making during teleoperation if objects are inaccurately represented in the VR reconstruction. A study using an end-effector-mounted RGBD camera with OctoMap mapping of the remote environment was conducted to explore the remote environment with fewer point cloud distortions and occlusions while using a relatively small bandwidth. Additionally, a tactile exploration study proposed a novel method for visually presenting information about objects' materials in the VR interface, to improve the operator's decision-making and address the challenges of point cloud visualisation. Two studies have been conducted to understand the effect of virtual world dynamic scaling on teleoperation flow. The first study investigated the use of rate mode control with constant and variable mapping of the operator's joystick position to the speed (rate) of the robot's end-effector, depending on the virtual world scale. The results showed that variable mapping allowed participants to teleoperate the robot more effectively but at the cost of increased perceived workload. The second study compared how operators used a virtual world scale in supervised control, comparing the virtual world scale of participants at the beginning and end of a 3-day experiment. The results showed that as operators got better at the task they as a group used a different virtual world scale, and participants' prior video gaming experience also affected the virtual world scale chosen by operators. Similarly, the human-operator's visual attention study has investigated how their visual attention changes as they become better at teleoperating a robot using the framework. The results revealed the most important objects in the VR reconstructed remote environment as indicated by operators' visual attention patterns as well as their visual priorities shifts as they got better at teleoperating the robot. The study also demonstrated that operators’ prior video gaming experience affects their ability to teleoperate the robot and their visual attention behaviours

    Efficient Models and Algorithms for Image Processing for Industrial Applications

    Get PDF
    Image processing and computer vision are now part of our daily life and allow artificial intelligence systems to see and perceive the world with a visual system similar to the human one. In the quest to improve performance, computer vision algorithms reach remarkable computational complexities. The high computational complexity is mitigated by the availability of hardware capable of supporting these computational demands. However, high-performance hardware cannot always be relied upon when one wants to make the research product usable. In this work, we have focused on the development of computer vision algorithms and methods with low computational complexity but high performance. The first approach is to study the relationship between Fourier-based metrics and Wasserstein distances to propose alternative metrics to the latter, considerably reducing the time required to obtain comparable results. In the second case, instead, we start from an industrial problem and develop a deep learning model for change detection, obtaining state-of-the-art performance but reducing the computational complexity required by at least a third compared to the existing literature

    Enhancing precision in human neuroscience

    Get PDF
    Human neuroscience has always been pushing the boundary of what is measurable. During the last decade, concerns about statistical power and replicability – in science in general, but also specifically in human neuroscience – have fueled an extensive debate. One important insight from this discourse is the need for larger samples, which naturally increases statistical power. An alternative is to increase the precision of measurements, which is the focus of this review. This option is often overlooked, even though statistical power benefits from increasing precision as much as from increasing sample size. Nonetheless, precision has always been at the heart of good scientific practice in human neuroscience, with researchers relying on lab traditions or rules of thumb to ensure sufficient precision for their studies. In this review, we encourage a more systematic approach to precision. We start by introducing measurement precision and its importance for well-powered studies in human neuroscience. Then, determinants for precision in a range of neuroscientific methods (MRI, M/EEG, EDA, Eye-Tracking, and Endocrinology) are elaborated. We end by discussing how a more systematic evaluation of precision and the application of respective insights can lead to an increase in reproducibility in human neuroscience

    Development and application of deep learning and spatial statistics within 3D bone marrow imaging

    Get PDF
    The bone marrow is a highly specialised organ, responsible for the formation of blood cells. Despite 50 years of research, the spatial organisation of the bone marrow remains an area full of controversy and contradiction. One reason for this is that imaging of bone marrow tissue is notoriously difficult. Secondly, efficient methodologies to fully extract and analyse large datasets remain the Achilles heels of imaging-based research. In this thesis I present a pipeline for generating 3D bone marrow images followed by the large-scale data extraction and spatial statistical analysis of the resulting data. Using these techniques, in the context of 3D imaging, I am able to identify and classify the location of hundreds of thousands of cells within various bone marrow samples. I then introduce a series of statistical techniques tailored to work with spatial data, resulting in a 3D statistical map of the tissue from which multi-cellular interactions can be clearly understood. As an illustration of the power of this new approach, I apply this pipeline to diseased samples of bone marrow with a particular focus on leukaemia and its interactions with CD8+ T cells. In so doing I show that this novel pipeline can be used to unravel complex multi-cellular interactions and assist researchers in understanding the processes taking place within the bone marrow.Open Acces

    Fully convolutional neural networks applied to large-scale marine morphology mapping

    Get PDF
    In this study we applied for the first time Fully Convolutional Neural Networks (FCNNs) to a marine bathymetric dataset to derive morphological classes over the entire Irish continental shelf. FCNNs are a set of algorithms within Deep Learning that produce pixel-wise classifications in order to create semantically segmented maps. While they have been extensively utilised on imagery for ecological mapping, their application on elevation data is still limited, especially in the marine geomorphology realm. We employed a high-resolution bathymetric dataset to create a set of normalised derivatives commonly utilised in seabed morphology and habitat mapping that include three bathymetric position indexes (BPIs), the vector ruggedness measurement (VRM), the aspect functions and three types of hillshades. The class domains cover ten or twelve semantically distinct surface textures and submarine landforms present on the shelf, with our definitions aiming for simplicity, prevalence and distinctiveness. Sets of 50 or 100 labelled samples for each class were used to train several U-Net architectures with ResNet-50 and VGG-13 encoders. Our results show a maximum model precision of 0.84 and recall of 0.85, with some classes reaching as high as 0.99 in both. A simple majority (modal) voting combining the ten best models produced an excellent map with overall F1 score of 0.96 and class precisions and recalls superior to 0.87. For target classes exhibiting high recall (proportion of positives identified), models also show high precision (proportion of correct identifications) in predictions which confirms that the underlying class boundary has been learnt. Derivative choice plays an important part in the performance of the networks, with hillshades combined with bathymetry providing the best results and aspect functions and VRM leading to an overall deterioration of prediction accuracies. The results show that FCNNs can be successfully applied to the seabed for a morphological exploration of the dataset and as a baseline for more in-depth habitat mapping studies. For example, prediction of semantically distinct classes as “submarine dune” and “bedrock outcrop” can be precise and reliable. Nonetheless, at present state FCNNs are not suitable for tasks that require more refined geomorphological classifications, as for the recognition of detailed morphogenetic processes

    VGC 2023 - Unveiling the dynamic Earth with digital methods: 5th Virtual Geoscience Conference: Book of Abstracts

    Get PDF
    Conference proceedings of the 5th Virtual Geoscience Conference, 21-22 September 2023, held in Dresden. The VGC is a multidisciplinary forum for researchers in geoscience, geomatics and related disciplines to share their latest developments and applications.:Short Courses 9 Workshops Stream 1 10 Workshop Stream 2 11 Workshop Stream 3 12 Session 1 – Point Cloud Processing: Workflows, Geometry & Semantics 14 Session 2 – Visualisation, communication & Teaching 27 Session 3 – Applying Machine Learning in Geosciences 36 Session 4 – Digital Outcrop Characterisation & Analysis 49 Session 5 – Airborne & Remote Mapping 58 Session 6 – Recent Developments in Geomorphic Process and Hazard Monitoring 69 Session 7 – Applications in Hydrology & Ecology 82 Poster Contributions 9
    • …
    corecore