448 research outputs found

    A Linear Multi-User Detector for STBC MC-CDMA Systems based on the Adaptive Implementation of the Minimum-Conditional Bit-Error-Rate Criterion and on Genetic Algorithm-assisted MMSE Channel Estimation

    Get PDF
    The implementation of efficient baseband receivers characterized by affordable computational load is a crucial point in the development of transmission systems exploiting diversity in different domains. In this paper, we are proposing a linear multi-user detector for MIMO MC-CDMA systems with Alamouti’s Space-Time Block Coding, inspired by the concept of Minimum Conditional Bit-Error-Rate (MCBER) and relying on Genetic-Algorithm (GA)-assisted MMSE channel estimation. The MCBER combiner has been implemented in adaptive way by using Least-Mean-Square (LMS) optimization. Firstly, we shall analyze the proposed adaptive MCBER MUD receiver with ideal knowledge of Channel Status Information (CSI). Afterwards, we shall consider the complete receiver structure, encompassing also the non-ideal GA-assisted channel estimation. Simulation results evidenced that the proposed MCBER receiver always outperforms state-of-the-art receiver schemes based on EGC and MMSE criterion exploiting the same degree of channel knowledge (i.e. ideal or estimated CSI)

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments

    MC-CDMA aided multi-user space-time shift keying in wideband channels

    No full text
    In this paper, we propose multi-carrier code division multiple access (MC-CDMA)-aided space-time shift keying (STSK) for mitigating the performance erosion of the classic STSK scheme in dispersive channels, while supporting multiple users. The codewords generated by the STSK scheme are appropriately spread in frequency-domain (FD) and transmitted over a number of parallel frequency-?at subchannels. We propose a new receiver architecture amalgamating the single-stream maximum-likelihood (ML) detector of the STSK system and the multiuser detector (MUD) of the MC-CDMA system. The performance of the proposed scheme is evaluated for transmission over frequency-selective channels in both uncoded and channel-coded scenarios. The results of our simulations demonstrate that the proposed scheme overcomes the channel impairments imposed by wideband channels and exhibits near-capacity performance in a channel-coded scenario

    A CM based equalizer for space-time spreading over channels with inter-Symbol interference

    Get PDF
    Space-time block coding (STBC) and a number of derivative techniques have been developed to maximize the diversity gain of a multi-input multi-output (MIMO) channel. This was later generalized for multi-user DS-CDMA systems through space-time spreading (STS), [3] and [4], which assumed flat fading as well as the availability of full channel state information (CSI) at the receiver. This paper focuses on the development of a blind chip-rate method for the equalization of STS over channels with inter-symbol interference (ISI). Simulation results are presented to demonstrate the convergence and noise resilience of the derived algorithm

    Performance Analysis of Multiple Input Multiple Output (MIMO) Multi-Carrier Code-Division Multiple Access (MC-CDMA) Combined with Quasi-Orthogonal Space Time Block Coding (QO-STBC) in Rayleigh Fading Channel

    Get PDF
    The need for a communication system with a higher data rate and mobility grows along with information and communication technology development. Combining MC-CDMA with the MIMO system and supporting the system with a good transmit diversity technique is a promising idea to provide the needed communication system, especially in high mobility conditions. MC-CDMA can support ubiquitous communications without affecting the achievable BER and is more capable of high-speed mobility. It integrates the benefit of both OFDM and CDMA. On the other hand, QO-STBC increases the bit rate without using additional bandwidth to transmit diversity in the MIMO system. So, this study proposed a system combining the MIMO MC-CDMA system with QO-STBC. The proposed system is investigated under high mobility conditions to see the system's performance. The simulation results show that our system performs better than the MC-CDMA STBC system and the QOSTBC system but not better than the MC-CDMA multilevel coding scheme. To reach the value of BER 10−3, MC-CDMA multilevel Coding requires less power, around 5 dB, than the proposed system

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    On the MIMO Channel Capacity of Multi-Dimensional Signal Sets

    No full text
    In this contribution we evaluate the capacity of Multi-Input Multi-Output (MIMO) systems using multi-dimensional PSK/QAM signal sets. It was shown that transmit diversity is capable of narrowing the gap between the capacity of the Rayleigh-fading channel and the AWGN channel. However, since this gap becomes narrower when the receiver diversity order is increased, for higher-order receiver diversity the performance advantage of transmit diversity diminishes. A MIMO system having full multiplexing gain has a higher achievable throughput than the corresponding MIMO system designed for full diversity gain, although this is attained at the cost of a higher complexity and a higher SNR. The tradeoffs between diversity gain, multiplexing gain, complexity and bandwidth are studied

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants
    corecore