1 research outputs found

    Computational methods for the discovery of molecular signatures from Omics Data

    Get PDF
    Molecular biomarkers, derived from high-throughput technologies, are the foundations of the "next-generation" precision medicine. Despite a decade of intense efforts and investments, the number of clinically valid biomarkers is modest. Indeed, the "big-data" nature of omics data provides new challenges that require an improvement in the strategies of data analysis and interpretation. In this thesis, two themes are proposed, both aimed at improving the statistical and computational methodology in the field of signatures discovery. The first work aim at identifying serum miRNAs to be used as diagnostic biomarkers associated with ovarian cancer. In particular, a guideline and an ad-hoc microarray normalization strategy for the analysis of circulating miRNAs is proposed. In the second work, a new approach for the identification of functional molecular signatures based on Gaussian graphical models is presented. The model can explore the topological information contained in the biological pathways and highlight the potential sources of differential behaviors in two experimental conditions
    corecore