511 research outputs found

    Separation of SSR signals by array processing in multilateration systems

    Get PDF
    Location and identification of cooperating aircraft in the airport area (and beyond) may be implemented by multilateration (MLAT) systems using the secondary surveillance radar (SSR) mode S signals. Most of these signals, spontaneously emitted from on-board mode S transponders at a fixed carrier frequency, arrive randomly at the receiving station, as well as many mode A/C replies from legacy transponders still in use. Several SSR signals are, then, overlapped in multiple aircraft situations. Therefore, the aim of this work is the separation of overlapped SSR signals, i.e., signals superimposed in time at receiving stations. We improve the MLAT receiving station by replacing the single antenna by an array of m elements and using array signal processing techniques. In the literature, several algorithms address the general source separation problem, but a very few of them are specifically designed for a mixture of overlapping SSR replies. Unfortunately, all of them have either some shortcomings, or an expensive computational cost, or no simple practical implementation. In this paper, we use the time sparsity property of the sources to propose more reliable, simpler, and more effective algorithms based on projection techniques to separate multiple SSR signals. Real recorded signals in a live environment are used to demonstrate the effectiveness of our method

    Radio frequency fingerprint identification for Internet of Things: A survey

    Get PDF
    Radio frequency fingerprint (RFF) identification is a promising technique for identifying Internet of Things (IoT) devices. This paper presents a comprehensive survey on RFF identification, which covers various aspects ranging from related definitions to details of each stage in the identification process, namely signal preprocessing, RFF feature extraction, further processing, and RFF identification. Specifically, three main steps of preprocessing are summarized, including carrier frequency offset estimation, noise elimination, and channel cancellation. Besides, three kinds of RFFs are categorized, comprising I/Q signal-based, parameter-based, and transformation-based features. Meanwhile, feature fusion and feature dimension reduction are elaborated as two main further processing methods. Furthermore, a novel framework is established from the perspective of closed set and open set problems, and the related state-of-the-art methodologies are investigated, including approaches based on traditional machine learning, deep learning, and generative models. Additionally, we highlight the challenges faced by RFF identification and point out future research trends in this field

    Implementation of a DVB-T2 passive coherent locator demonstrator

    Get PDF
    Passive Coherent Locator (PCL) radar’s have seen extensive research in the past decade. PCL radars utilize illuminators of opportunity (IOO) as transmitters to perform target detection. Particular interests in FM (analogue) and DVB-T/T2, DAB (digital) radio frequency signals has seen significant focus as possible illuminators for radar processing. The University of Cape Town (UCT) , in particular, has extensive history on passive radar research including the implementation of a full narrowband FM PCL radar demonstrator. This dissertation details the design and implementation of a DVB-T2 Passive Coherent Locator radar demonstrator isolating a single DVB-T2 channel. This includes the design, construction, testing and evaluation of the full PCL radar system. System planning was implemented detailing the possible IOOs available in the Cape Town area. This was followed by signal propagation simulations to determine the effects the environment would have on the transmitted wave utilising Advanced Refractive Effects Prediction System (AREPS) model. A front-end design was simulated and implemented utilizing commercial-of-the-shelf (COTS) hardware including the National Instruments Ettus N210 software defined Radio (SDR) based on the system planning results. A processing chain for DVB-T2 based PCL radar was then investigated to determine the most optimal processing chain structure, with the mismatched filtering technique being proposed as an ideal choice for DVB-T2 PCL radar. The proposed processing chain was implemented and tested on both the Ettus N210 front-end as well as a commercial system. The full radar demonstrator was then tested by observing the air traffic surrounding the Cape Town International airport resulting in successful detections of aircraft in the surveyed environment

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Interoperable ADS-B Confidentiality

    Get PDF
    The worldwide air traffic infrastructure is in the late stages of transition from legacy transponder systems to Automatic Dependent Surveillance - Broadcast (ADS-B) based systems. ADS-B relies on position information from GNSS and requires aircraft to transmit their identification, state, and position. ADS-B promises the availability of high-fidelity air traffic information; however, position and identification data are not secured via authentication or encryption. This lack of security for ADS-B allows non-participants to observe and collect data on both government and private flight activity. This is a proposal for a lightweight, interoperable ADS-B confidentiality protocol which uses existing format preserving encryption and an innovative unidirectional key handoff to ensure backward compatibility. Anonymity and data confidentiality are achieved selectively on a per-session basis. This research also investigates the effect of false replies unsynchronized in time (FRUIT) on the packet error ratio (PER) for Mode S transmissions. High PERs result in range and time limits being imposed on the key handoff mechanism of this proposal. Overall, this confidentiality protocol is ready for implementation, however further research is required to validate a revised key handoff mechanism

    Application of advanced on-board processing concepts to future satellite communications systems: Bibliography

    Get PDF
    Abstracts are presented of a literature survey of reports concerning the application of signal processing concepts. Approximately 300 references are included

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems

    Wireless Positioning Applications in Multipath Environments

    Get PDF
    Funklokalisierung in der Umgebung mit der Mehrwegeausbreitung In den vergangenen Jahren wurde zunehmend Forschung im Bereich drahtlose Sensornetzwerk (engl. „Wireless Sensor Network“) betrieben. Lokalisierung im Innenraum ist ein vielversprechendes Forschungsthema, das in den Literaturen vielfältig diskutiert wird. Jedoch berücksichtigen die meisten Arbeiten einen wichtigen Faktor nicht, nämlich die Mehrwegeausbreitung, welche die Genauigkeit der Lokalisierung beeinflusst. Diese Arbeit bezieht sich auf Lokalisierungsanwendungen in UWB (Ultra-Breitband-Technologie)- und WLAN (drahtloses lokales Netzwerk)- Systemen im Fall von Mehrwegeausbreitung. Zur Steigerung der Robustheit der Lokalisierungsanwendungen bei Mehrwegeausbreitung wurden neuartige Lokalisierungsalgorithmen, die auf der Auswertung der Ankunftszeit (engl. „Time of Arrival“, ToA), der empfangenen Signalstärke (engl. „Received Signal Strength“, RSS) und dem Einfallswinkel (engl. „Angle of Arrival“, AoA) basieren, vorgestellt und untersucht. Bei Mehrwegeausbreitung ist die Fragen den direkten Pfad zu lösen, da der direkte Pfad (engl. „Direct Path“, DP) schwächer als anderer Pfad sein kann. In dieser Arbeit werden daher neuartige Algorithmen zur Flankendetektion der empfangenen Signale für UWB Systeme entwickelt, um die Positionsbestimmung zu verbessern: Es gibt die kooperative Flankendetektion (engl. „Joint Leading Edge Detection“, JLED), die erweiterte maximalwahrscheinlichkeitbasierte Kanalschätzung (engl. „Improved Maximum Likelihood Channel Estimation“, IMLCE) und die Flankendetektion mit untervektorraumbasiertem Verfahren (engl. „Subspace based Approaches“, SbA). Bei der kooperativen Flankendetektion werden zwei Kriterien herangezogen nämlich die minimale Fläche und das minimale mittlere Quadrat des Schätzfehlers (engl. „Minimum Mean Squared Error“, MMSE). Weiterhin wird ein monopulsbasierter Kanalschätzer (engl. „Monopulse based Channel Estimator“, MCE) entwickelt, um die möglicherweise falsche Kombinationen der Flanken (engl. „Leading Edge Combination“, LEC) auszuschließen. Zudem wird in der Arbeit der erweiterte MLCE vorgestellt, der aus einem groben und einem genauen Schätzungsschritt besteht. Bei dem neuartigen untervektorraumbasierten Verfahren werden ein statischer und ein Schwundkanal untersucht. Im ersten Fall wird die Kombination der Rückwärtssuchalgorithmus mit untervektorraumbasierten Verfahren untersucht. Zudem wird im zweiten Fall ein untervektorraumbasierte Verfahren im Frequenzbereich vorgestellt. Für die RSS-basierte Lokalisierung wird ein Fingerabdruckverfahren (engl. „Fingerprint Approach“) und ein neuartiger Entfernungsschätzer basierend auf der Kanalenergie entwickelt und implementiert. Schließlich wird in der Arbeit ein Lokalisierungssystem mit Winkelschätzern inklusive einer entsprechenden Kalibrierung auf einer 802.11a/g Hardwareplattform vorgestellt. Dazu wird ein neuartiger Trägerschätzer und Kanalschätzer entwickelt.In the past several years there has been more growing research on Wireless Sensor Network (WSN). The indoor localization is a promising research topic, which is discussed variously in some literatures. However, the most work does not consider an important factor, i.e. the multi-path propagation, which affects the accuracy of the indoor localization. This work dealt with the indoor localization applied in UWB (Ultra Wide Band) and WLAN (Wireless Local Area Network) systems in the case of multi-path propagation. To improve the robustness of the applications of localization in the case of multi-path propagation, novel localization algorithms based on the evaluation of the Time of Arrival (ToA), the Received Signal Strength (RSS) and the Angle of Arrival (AoA) were proposed and investigated. In the ToA based localization systems, the detection of shortest signal propagation time plays a critical role. In the case of multi-path propagation, the Direct Path (DP) needs to be resolved because the DP may be weaker than Multi Path Components (MPC). Thus the novel algorithms for leading edge detection were developed in this work in order to improve the accuracy of localization, namely Joint Leading Edge Detection (JLED), Improved Maximum Likelihood Channel Estimation (IMLCE) and the leading edge detection with Subspace based Approaches (SbA). Two criteria were proposed and referenced for the JLED, namely Minimum Area (MA) and Minimum Mean Squared Error (MMSE). Furthermore, a monocycle-based channel estimator was developed to mitigate the fake LECs (Leading Edge Combination). The estimation error of JLED was theoretically analyzed and simulated for evaluation of the estimator. IMLCE consists of a coarse and a fine estimation step. The coarse position of the first correlation peak shall be found with the Search Back Algorithms (SBA), which is followed by MLCE-algorithms. The novel SbA was investigated in a static and a fading channel. In the former case, the iterative algorithm, which combines SbA with SBA, was investigated. In the latter case, the FD-SbA (Frequency Domain - SbA) was proposed, which requires to calculate the covariance matrix in the FD. For the RSS based localization, fingerprint approach and the novel channel energy based distance estimator were investigated and developed in this dissertation. Finally, a localization system using AoA estimation and the initial calibration was presented on an 802.11a/g hardware platform. A novel Carrier Frequency Offset (CFO) estimator and channel estimator were investigated and developed. The measurement campaigns were made for one, two and four fixed stations, respectivel
    • …
    corecore