9 research outputs found

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201

    Secrecy Wireless Information and Power Transfer with MISO Beamforming

    Full text link
    The dual use of radio signals for simultaneous wireless information and power transfer (SWIPT) has recently drawn significant attention. To meet the practical requirement that energy receivers (ERs) operate with significantly higher received power as compared to information receivers (IRs), ERs need to be deployed in more proximity to the transmitter than IRs. However, due to the broadcast nature of wireless channels, one critical issue arises that the messages sent to IRs can be eavesdropped by ERs, which possess better channels from the transmitter. In this paper, we address this new secrecy communication problem in a multiuser multiple-input single-output (MISO) SWIPT system where one multi-antenna transmitter sends information and energy simultaneously to an IR and multiple ERs, each with one single antenna. To optimally design transmit beamforming vectors and their power allocation, two problems are investigated with different aims: the first problem maximizes the secrecy rate for IR subject to individual harvested energy constraints of ERs, while the second problem maximizes the weighted sum-energy transferred to ERs subject to a secrecy rate constraint for IR. We solve these two non-convex problems optimally by reformulating each of them into a two-stage problem. First, by fixing the signal-to-interference-plus-noise ratio (SINR) target for ERs (for the first problem) or IR (for the second problem), we obtain the optimal beamforming and power allocation solution by applying the technique of semidefinite relaxation (SDR). Then, the original problems are solved by a one-dimension search over the optimal SINR target for ERs or IR. Furthermore, for each of the two studied problems, suboptimal solutions of lower complexity are also proposed in which the information and energy beamforming vectors are separately designed with their power allocation.Comment: accepted by IEEE Transactions on Signal Processing. Longer version of arXiv:1306.096

    A novel mode switching scheme utilizing random beamforming for opportunistic energy harvesting

    No full text
    10.1109/WCNC.2013.6555260IEEE Wireless Communications and Networking Conference, WCNC4250-425
    corecore