2 research outputs found

    Efficient mobile video transmission based on a joint coding scheme

    Get PDF
    In this paper, we propose a joint coding design which uses the Symbol Forward Error Correction (S-FEC) at the application layer. The purpose of this work is on one hand to minimize the Packet Loss Rate (PLR) and, on the other hand to maximize the visual quality of video transmitted over a wireless network (WN).The scheme proposed is founded on a FEC adaptable with the semantics of the H.264/AVC video encoding.This mechanism relies upon a rate distortion algorithm, controlling the channel code rates under the global rate constraints given by the WN.Based on a data partitioning (DP) tool, both packet type and packet length are taken into account by the proposed optimization mechanism which leads to unequal error protection (UEP). The performance of the proposed JSCC unequal error control is illustrated over wireless network by performing simulations under different channel conditions. The simulation results are then compared with an equal error protection (EEP) scheme

    Application-Layer FEC Scheme Configuration Optimization via Hybrid Simulated Annealing

    Full text link
    An optimization technique based on an adapted combination of simulated annealing (SA) and tabu search (TS) is presented. This method aims at finding near-optimal unequal error protection (UEP) application-layer FEC code configurations. This approach is intended to smartly protect audio and video transmission over IP networks when hard time restrictions apply. The considered code is a UEP version of the widely-used Pro-MPEG COP3 codes enabling the use of several matrices of dissimilar size and thus of unequal recovery capability. Finding the optimal configuration frequently requires the evaluation of a large solution space. So, to fulfill the imposed constraints, SA is adapted to the specifics of the scenario. In particular, the annealing schedule is conditioned by the real-time restrictions. Furthermore, solution neighborhood structures are determined by a proposed definition of distance between protection configurations, which, jointly with TS, conditions the selection of candidate solutions. Experimental results show a significantly improved performance of the optimization process, which invariably fulfills imposed timing constraints, at the expense of a very low distortion increase, when compared to using exhaustive search. These results allow the use of UEP Pro-MPEG COP3 codes for protecting video and audio transmission, which distinctly outperforms the standard code in a wide range of scenarios
    corecore