42,540 research outputs found

    Fault detection and diagnosis using hybrid artificial neural network based method

    Get PDF
    This thesis proposes a novel approach to fault detection and diagnosis (FDD) that is focused on artificial neural network (ANN). Unlike traditional methods for FDD, neural networks can take advantage of large amounts of complex process data and extract core features to help detect and diagnose faults. In the first part of this work, a hybrid model was developed to improve efficiency and feasibility of neural networks by combining Kernel Principal Analysis (kPCA) and deep neural network. The hybrid model was successfully validated by Tennessee Eastman Process. The second part of the research focuses on a specific application to gas leak detection and classification. In this scenario, a convolutional network (ConvNet) was used as a feature extraction tool prior to network training due to the visual nature of data. The model was shown to accurately predict leaks and leak sizes; furthermore, further model optimizations were performed and evaluated. The proposed approach is superior to other FDD approaches due to its performance and optimization flexibility

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    A Hybrid Neural Network Framework and Application to Radar Automatic Target Recognition

    Full text link
    Deep neural networks (DNNs) have found applications in diverse signal processing (SP) problems. Most efforts either directly adopt the DNN as a black-box approach to perform certain SP tasks without taking into account of any known properties of the signal models, or insert a pre-defined SP operator into a DNN as an add-on data processing stage. This paper presents a novel hybrid-NN framework in which one or more SP layers are inserted into the DNN architecture in a coherent manner to enhance the network capability and efficiency in feature extraction. These SP layers are properly designed to make good use of the available models and properties of the data. The network training algorithm of hybrid-NN is designed to actively involve the SP layers in the learning goal, by simultaneously optimizing both the weights of the DNN and the unknown tuning parameters of the SP operators. The proposed hybrid-NN is tested on a radar automatic target recognition (ATR) problem. It achieves high validation accuracy of 96\% with 5,000 training images in radar ATR. Compared with ordinary DNN, hybrid-NN can markedly reduce the required amount of training data and improve the learning performance

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks
    corecore