50,346 research outputs found

    Using vector agents to implement an unsupervised image classification algorithm

    Get PDF
    Unsupervised image classification methods conventionally use the spatial information of pixels to reduce the effect of speckled noise in the classified map. To extract this spatial information, they employ a predefined geometry, i.e., a fixed-size window or segmentation map. However, this coding of geometry lacks the necessary complexity to accurately reflect the spatial connectivity within objects in a scene. Additionally, there is no unique mathematical formula to determine the shape and scale applied to the geometry, being parameters that are usually estimated by expert users. In this paper, a novel geometry-led approach using Vector Agents (VAs) is proposed to address the above drawbacks in unsupervised classification algorithms. Our proposed method has two primary steps: (1) creating reliable training samples and (2) constructing the VA model. In the first step, the method applies the statistical information of a classified image by k-means to select a set of reliable training samples. Then, in the second step, the VAs are trained and constructed to classify the image. The model is tested for classification on three high spatial resolution images. The results show the enhanced capability of the VA model to reduce noise in images that have complex features, e.g., streets, buildings. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    Colour volumetric compression for realistic view synthesis applications

    Get PDF

    Structured light techniques for 3D surface reconstruction in robotic tasks

    Get PDF
    Robotic tasks such as navigation and path planning can be greatly enhanced by a vision system capable of providing depth perception from fast and accurate 3D surface reconstruction. Focused on robotic welding tasks we present a comparative analysis of a novel mathematical formulation for 3D surface reconstruction and discuss image processing requirements for reliable detection of patterns in the image. Models are presented for a parallel and angled configurations of light source and image sensor. It is shown that the parallel arrangement requires 35\% fewer arithmetic operations to compute a point cloud in 3D being thus more appropriate for real-time applications. Experiments show that the technique is appropriate to scan a variety of surfaces and, in particular, the intended metallic parts for robotic welding tasks
    • …
    corecore