229 research outputs found
Infrared face recognition: a comprehensive review of methodologies and databases
Automatic face recognition is an area with immense practical potential which
includes a wide range of commercial and law enforcement applications. Hence it
is unsurprising that it continues to be one of the most active research areas
of computer vision. Even after over three decades of intense research, the
state-of-the-art in face recognition continues to improve, benefitting from
advances in a range of different research fields such as image processing,
pattern recognition, computer graphics, and physiology. Systems based on
visible spectrum images, the most researched face recognition modality, have
reached a significant level of maturity with some practical success. However,
they continue to face challenges in the presence of illumination, pose and
expression changes, as well as facial disguises, all of which can significantly
decrease recognition accuracy. Amongst various approaches which have been
proposed in an attempt to overcome these limitations, the use of infrared (IR)
imaging has emerged as a particularly promising research direction. This paper
presents a comprehensive and timely review of the literature on this subject.
Our key contributions are: (i) a summary of the inherent properties of infrared
imaging which makes this modality promising in the context of face recognition,
(ii) a systematic review of the most influential approaches, with a focus on
emerging common trends as well as key differences between alternative
methodologies, (iii) a description of the main databases of infrared facial
images available to the researcher, and lastly (iv) a discussion of the most
promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap
with arXiv:1306.160
A multimodal deep learning framework using local feature representations for face recognition
YesThe most recent face recognition systems are
mainly dependent on feature representations obtained using
either local handcrafted-descriptors, such as local binary patterns
(LBP), or use a deep learning approach, such as deep
belief network (DBN). However, the former usually suffers
from the wide variations in face images, while the latter
usually discards the local facial features, which are proven
to be important for face recognition. In this paper, a novel
framework based on merging the advantages of the local
handcrafted feature descriptors with the DBN is proposed to
address the face recognition problem in unconstrained conditions.
Firstly, a novel multimodal local feature extraction
approach based on merging the advantages of the Curvelet
transform with Fractal dimension is proposed and termed
the Curvelet–Fractal approach. The main motivation of this
approach is that theCurvelet transform, a newanisotropic and
multidirectional transform, can efficiently represent themain
structure of the face (e.g., edges and curves), while the Fractal
dimension is one of the most powerful texture descriptors
for face images. Secondly, a novel framework is proposed,
termed the multimodal deep face recognition (MDFR)framework,
to add feature representations by training aDBNon top
of the local feature representations instead of the pixel intensity
representations. We demonstrate that representations acquired by the proposed MDFR framework are complementary
to those acquired by the Curvelet–Fractal approach.
Finally, the performance of the proposed approaches has
been evaluated by conducting a number of extensive experiments
on four large-scale face datasets: the SDUMLA-HMT,
FERET, CAS-PEAL-R1, and LFW databases. The results
obtained from the proposed approaches outperform other
state-of-the-art of approaches (e.g., LBP, DBN, WPCA) by
achieving new state-of-the-art results on all the employed
datasets
Extraction of Face Features Using Various Techniques
This thesis aims at devising a novel method of feature extraction of face images which proves to be faster and more accurate than the existing methods defined by wavelet, curvelet and ridgelet transforms. DOST method of extracting features from face images keeps into account every minute detail of the face image i.e both spatial and frequency based features. The application of LDA method onto the DOST features in order to reduce the dimensionality of the method further helps in making the process of feature extraction faster and hence reduces the time complexity of the feature extraction method. The matching is done by using different similarity measures such as euclidean distance. Results from different methods are evaluated and compared to present the effectiveness of this new method for feature extraction
Face detection in profile views using fast discrete curvelet transform (FDCT) and support vector machine (SVM)
Human face detection is an indispensable component in face processing applications, including automatic face recognition, security surveillance, facial expression recognition, and the like. This paper presents a profile face detection algorithm based on curvelet features, as curvelet transform offers good directional representation and can capture edge information in human face from different angles. First, a simple skin color segmentation scheme based on HSV (Hue - Saturation - Value) and YCgCr (luminance - green chrominance - red chrominance) color models is used to extract skin blocks. The segmentation scheme utilizes only the S and CgCr components, and is therefore luminance independent. Features extracted from three frequency bands from curvelet decomposition are used to detect face in each block. A support vector machine (SVM) classifier is trained for the classification task. In the performance test, the results showed that the proposed algorithm can detect profile faces in color images with good detection rate and low misdetection rate
Spontaneous Subtle Expression Detection and Recognition based on Facial Strain
Optical strain is an extension of optical flow that is capable of quantifying
subtle changes on faces and representing the minute facial motion intensities
at the pixel level. This is computationally essential for the relatively new
field of spontaneous micro-expression, where subtle expressions can be
technically challenging to pinpoint. In this paper, we present a novel method
for detecting and recognizing micro-expressions by utilizing facial optical
strain magnitudes to construct optical strain features and optical strain
weighted features. The two sets of features are then concatenated to form the
resultant feature histogram. Experiments were performed on the CASME II and
SMIC databases. We demonstrate on both databases, the usefulness of optical
strain information and more importantly, that our best approaches are able to
outperform the original baseline results for both detection and recognition
tasks. A comparison of the proposed method with other existing spatio-temporal
feature extraction approaches is also presented.Comment: 21 pages (including references), single column format, accepted to
Signal Processing: Image Communication journa
A novel facial expression recognition based on the curevlet features
Curvelet transform has been recently proved to be a powerful tool for multi-resolution analysis on images. In this paper we propose a new approach for facial expression recognition based on features extracted via curvelet transform. First curvelet transform is presented and its advantages in image analysis are described. Then the coefficients of curvelet in selected scales and angles are used as features for image analysis. Consequently the Principal Component Analysis (PCA) and Linear Discriminate Analysis (LDA) are used to reduce and optimize the curvelet features. Finally we use the nearest neighbor classifier to recognize the facial expressions based on these features. The experimental results on JAFFE and Cohn Kanade two benchmark databases show that the proposed approach outperforms the PCA and LDA techniques on the original image pixel values as well as its counterparts with the wavelet features
- …
