229 research outputs found

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    A multimodal deep learning framework using local feature representations for face recognition

    Get PDF
    YesThe most recent face recognition systems are mainly dependent on feature representations obtained using either local handcrafted-descriptors, such as local binary patterns (LBP), or use a deep learning approach, such as deep belief network (DBN). However, the former usually suffers from the wide variations in face images, while the latter usually discards the local facial features, which are proven to be important for face recognition. In this paper, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the DBN is proposed to address the face recognition problem in unconstrained conditions. Firstly, a novel multimodal local feature extraction approach based on merging the advantages of the Curvelet transform with Fractal dimension is proposed and termed the Curvelet–Fractal approach. The main motivation of this approach is that theCurvelet transform, a newanisotropic and multidirectional transform, can efficiently represent themain structure of the face (e.g., edges and curves), while the Fractal dimension is one of the most powerful texture descriptors for face images. Secondly, a novel framework is proposed, termed the multimodal deep face recognition (MDFR)framework, to add feature representations by training aDBNon top of the local feature representations instead of the pixel intensity representations. We demonstrate that representations acquired by the proposed MDFR framework are complementary to those acquired by the Curvelet–Fractal approach. Finally, the performance of the proposed approaches has been evaluated by conducting a number of extensive experiments on four large-scale face datasets: the SDUMLA-HMT, FERET, CAS-PEAL-R1, and LFW databases. The results obtained from the proposed approaches outperform other state-of-the-art of approaches (e.g., LBP, DBN, WPCA) by achieving new state-of-the-art results on all the employed datasets

    Extraction of Face Features Using Various Techniques

    Get PDF
    This thesis aims at devising a novel method of feature extraction of face images which proves to be faster and more accurate than the existing methods defined by wavelet, curvelet and ridgelet transforms. DOST method of extracting features from face images keeps into account every minute detail of the face image i.e both spatial and frequency based features. The application of LDA method onto the DOST features in order to reduce the dimensionality of the method further helps in making the process of feature extraction faster and hence reduces the time complexity of the feature extraction method. The matching is done by using different similarity measures such as euclidean distance. Results from different methods are evaluated and compared to present the effectiveness of this new method for feature extraction

    Face detection in profile views using fast discrete curvelet transform (FDCT) and support vector machine (SVM)

    Get PDF
    Human face detection is an indispensable component in face processing applications, including automatic face recognition, security surveillance, facial expression recognition, and the like. This paper presents a profile face detection algorithm based on curvelet features, as curvelet transform offers good directional representation and can capture edge information in human face from different angles. First, a simple skin color segmentation scheme based on HSV (Hue - Saturation - Value) and YCgCr (luminance - green chrominance - red chrominance) color models is used to extract skin blocks. The segmentation scheme utilizes only the S and CgCr components, and is therefore luminance independent. Features extracted from three frequency bands from curvelet decomposition are used to detect face in each block. A support vector machine (SVM) classifier is trained for the classification task. In the performance test, the results showed that the proposed algorithm can detect profile faces in color images with good detection rate and low misdetection rate

    Spontaneous Subtle Expression Detection and Recognition based on Facial Strain

    Full text link
    Optical strain is an extension of optical flow that is capable of quantifying subtle changes on faces and representing the minute facial motion intensities at the pixel level. This is computationally essential for the relatively new field of spontaneous micro-expression, where subtle expressions can be technically challenging to pinpoint. In this paper, we present a novel method for detecting and recognizing micro-expressions by utilizing facial optical strain magnitudes to construct optical strain features and optical strain weighted features. The two sets of features are then concatenated to form the resultant feature histogram. Experiments were performed on the CASME II and SMIC databases. We demonstrate on both databases, the usefulness of optical strain information and more importantly, that our best approaches are able to outperform the original baseline results for both detection and recognition tasks. A comparison of the proposed method with other existing spatio-temporal feature extraction approaches is also presented.Comment: 21 pages (including references), single column format, accepted to Signal Processing: Image Communication journa

    A novel facial expression recognition based on the curevlet features

    Get PDF
    Curvelet transform has been recently proved to be a powerful tool for multi-resolution analysis on images. In this paper we propose a new approach for facial expression recognition based on features extracted via curvelet transform. First curvelet transform is presented and its advantages in image analysis are described. Then the coefficients of curvelet in selected scales and angles are used as features for image analysis. Consequently the Principal Component Analysis (PCA) and Linear Discriminate Analysis (LDA) are used to reduce and optimize the curvelet features. Finally we use the nearest neighbor classifier to recognize the facial expressions based on these features. The experimental results on JAFFE and Cohn Kanade two benchmark databases show that the proposed approach outperforms the PCA and LDA techniques on the original image pixel values as well as its counterparts with the wavelet features

    Curvelet Based Feature Extraction

    Get PDF
    corecore