3 research outputs found

    Self-organizing technique for improving coverage in connected mobile objects networks

    Get PDF
    Despite the multiple benefits offered today by connected mobile objects networks (CMONs), some constraints continue to limit their development and to degrade their applications and services’ performance. Given their limited energy, some or many objects may stop functioning which leads to the deterioration of network functionalities such as monitoring, detection and transfer of data. It is in this context that our work is situated, namely the improvement of applications performance and the quality of service (QoS) within CMONs, by exploiting some communication environment parameters and geometry techniques.We propose a new technique called self-organization area coverage (SOAC) for CMONs which aims to ensure maximum coverage in the network while optimizing the exploited resources. SOAC has been evaluated and compared not only to the network without improvement but to two other solutions proposed in the literature. The obtained results show a clear improvement in terms of network coverage and several QoS parameters

    A Novel Energy-Aware Distributed Clustering Algorithm for Heterogeneous Wireless Sensor Networks in the Mobile Environment

    No full text
    In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime

    A Novel Energy-Aware Distributed Clustering Algorithm for Heterogeneous Wireless Sensor Networks in the Mobile Environment

    No full text
    In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime
    corecore