12,327 research outputs found

    Flexible Differentially Private Vertical Federated Learning with Adaptive Feature Embeddings

    Full text link
    The emergence of vertical federated learning (VFL) has stimulated concerns about the imperfection in privacy protection, as shared feature embeddings may reveal sensitive information under privacy attacks. This paper studies the delicate equilibrium between data privacy and task utility goals of VFL under differential privacy (DP). To address the generality issue of prior arts, this paper advocates a flexible and generic approach that decouples the two goals and addresses them successively. Specifically, we initially derive a rigorous privacy guarantee by applying norm clipping on shared feature embeddings, which is applicable across various datasets and models. Subsequently, we demonstrate that task utility can be optimized via adaptive adjustments on the scale and distribution of feature embeddings in an accuracy-appreciative way, without compromising established DP mechanisms. We concretize our observation into the proposed VFL-AFE framework, which exhibits effectiveness against privacy attacks and the capacity to retain favorable task utility, as substantiated by extensive experiments

    User's Privacy in Recommendation Systems Applying Online Social Network Data, A Survey and Taxonomy

    Full text link
    Recommender systems have become an integral part of many social networks and extract knowledge from a user's personal and sensitive data both explicitly, with the user's knowledge, and implicitly. This trend has created major privacy concerns as users are mostly unaware of what data and how much data is being used and how securely it is used. In this context, several works have been done to address privacy concerns for usage in online social network data and by recommender systems. This paper surveys the main privacy concerns, measurements and privacy-preserving techniques used in large-scale online social networks and recommender systems. It is based on historical works on security, privacy-preserving, statistical modeling, and datasets to provide an overview of the technical difficulties and problems associated with privacy preserving in online social networks.Comment: 26 pages, IET book chapter on big data recommender system

    Recoverable Privacy-Preserving Image Classification through Noise-like Adversarial Examples

    Full text link
    With the increasing prevalence of cloud computing platforms, ensuring data privacy during the cloud-based image related services such as classification has become crucial. In this study, we propose a novel privacypreserving image classification scheme that enables the direct application of classifiers trained in the plaintext domain to classify encrypted images, without the need of retraining a dedicated classifier. Moreover, encrypted images can be decrypted back into their original form with high fidelity (recoverable) using a secret key. Specifically, our proposed scheme involves utilizing a feature extractor and an encoder to mask the plaintext image through a newly designed Noise-like Adversarial Example (NAE). Such an NAE not only introduces a noise-like visual appearance to the encrypted image but also compels the target classifier to predict the ciphertext as the same label as the original plaintext image. At the decoding phase, we adopt a Symmetric Residual Learning (SRL) framework for restoring the plaintext image with minimal degradation. Extensive experiments demonstrate that 1) the classification accuracy of the classifier trained in the plaintext domain remains the same in both the ciphertext and plaintext domains; 2) the encrypted images can be recovered into their original form with an average PSNR of up to 51+ dB for the SVHN dataset and 48+ dB for the VGGFace2 dataset; 3) our system exhibits satisfactory generalization capability on the encryption, decryption and classification tasks across datasets that are different from the training one; and 4) a high-level of security is achieved against three potential threat models. The code is available at https://github.com/csjunjun/RIC.git.Comment: 23 pages, 9 figure

    DP-Mix: Mixup-based Data Augmentation for Differentially Private Learning

    Full text link
    Data augmentation techniques, such as simple image transformations and combinations, are highly effective at improving the generalization of computer vision models, especially when training data is limited. However, such techniques are fundamentally incompatible with differentially private learning approaches, due to the latter's built-in assumption that each training image's contribution to the learned model is bounded. In this paper, we investigate why naive applications of multi-sample data augmentation techniques, such as mixup, fail to achieve good performance and propose two novel data augmentation techniques specifically designed for the constraints of differentially private learning. Our first technique, DP-Mix_Self, achieves SoTA classification performance across a range of datasets and settings by performing mixup on self-augmented data. Our second technique, DP-Mix_Diff, further improves performance by incorporating synthetic data from a pre-trained diffusion model into the mixup process. We open-source the code at https://github.com/wenxuan-Bao/DP-Mix.Comment: 17 pages, 2 figures, to be published in Neural Information Processing Systems 202
    • …
    corecore