45,590 research outputs found

    Context-Awareness Enhances 5G Multi-Access Edge Computing Reliability

    Get PDF
    The fifth generation (5G) mobile telecommunication network is expected to support Multi- Access Edge Computing (MEC), which intends to distribute computation tasks and services from the central cloud to the edge clouds. Towards ultra-responsive, ultra-reliable and ultra-low-latency MEC services, the current mobile network security architecture should enable a more decentralized approach for authentication and authorization processes. This paper proposes a novel decentralized authentication architecture that supports flexible and low-cost local authentication with the awareness of context information of network elements such as user equipment and virtual network functions. Based on a Markov model for backhaul link quality, as well as a random walk mobility model with mixed mobility classes and traffic scenarios, numerical simulations have demonstrated that the proposed approach is able to achieve a flexible balance between the network operating cost and the MEC reliability.Comment: Accepted by IEEE Access on Feb. 02, 201

    A Review on Group Key Agreement Protocols

    Get PDF
    In this paper, we study Group key agreement means multiple parties want to create a common secret key to be used to exchange information securely. The group key agreement with an arbitrary connectivity graph, where each user is only aware of his neighbor and has no information about the existence of other users. Further, he has no information about the network topology. We implement the existing system with more time efficient manner and provide a multicast key generation server which is expected in future scope by current authors. We find the Diffie Hellman key exchange protocol should be replaced by a new multicast key exchange protocol that can work with one to one and one to many functionality. We also tend to implement a strong symmetric encryption for improving file security in the system

    Survey on Security User Data in Local Connectivity Using Multicast Key Agreement

    Get PDF
    In this paper, we study Group key agreement means multiple parties want to create a common secret key to be used to exchange information securely. The group key agreement with an arbitrary connectivity graph, where each user is only aware of his neighbor and has no information about the existence of other users. Further, he has no information about the network topology. We implement the existing system with more time efficient manner and provide a multicast key generation server which is expected in future scope by current authors. We replace the Diffie Hellman key exchange protocol by a new multicast key exchange protocol that can work with one to one and one to many functionality. We also tend to implement a strong symmetric encryption for improving file security in the system

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Improving Security in Group Data Sharing Using Multicast Key Agreement

    Get PDF
    In this paper, we study Group key agreement means multiple parties want to create a common secret key to be used to exchange information securely. The group key agreement with an arbitrary connectivity graph, where each user is only aware of his neighbor and has no information about the existence of other users. Further, he has no information about the network topology. We implement the existing system with more time efficient manner and provide a multicast key generation server which is expected in future scope by current authors. We replace the Diffie Hellman key exchange protocol by a new multicast key exchange protocol that can work with one to one and one to many functionality. We also tend to implement a strong symmetric encryption for improving file security in the system

    Efficiency in MANET Systems using Energy efficient encryption algorithm

    Get PDF
    In this paper, we study Group key agreement means multiple parties want to create a common secret key to be used to exchange information securely. The group key agreement with an arbitrary connectivity graph, where each user is only aware of his neighbor and has no information about the existence of other users. Further, he has no information about the network topology. We implement the existing system with more time efficient manner and provide a multicast key generation server which is expected in future scope by current authors. We replace the Diffie Hellman key exchange protocol by a new multicast key exchange protocol that can work with one to one and one to many functionality. We also tend to implement a strong symmetric encryption for improving file security in the s
    • …
    corecore