242 research outputs found

    A Review: Effort Estimation Model for Scrum Projects using Supervised Learning

    Get PDF
    Effort estimation practice in Agile is a critical component of the methodology to help cross-functional teams to plan and prioritize their work. Agile approaches have emerged in recent years as a more adaptable means of creating software projects because they consistently produce a workable end product that is developed progressively, preventing projects from failing entirely. Agile software development enables teams to collaborate directly with clients and swiftly adjust to changing requirements. This produces a result that is distinct, gradual, and targeted. It has been noted that the present Scrum estimate approach heavily relies on historical data from previous projects and expert opinion, while existing agile estimation methods like analogy and planning poker become unpredictable in the absence of historical data and experts. User Stories are used to estimate effort in the Agile approach, which has been adopted by 60–70% of the software businesses. This study's goal is to review a variety of strategies and techniques that will be used to gauge and forecast effort. Additionally, the supervised machine learning method most suited for predictive analysis is reviewed in this paper

    A Lite Fireworks Algorithm with Fractal Dimension Constraint for Feature Selection

    Full text link
    As the use of robotics becomes more widespread, the huge amount of vision data leads to a dramatic increase in data dimensionality. Although deep learning methods can effectively process these high-dimensional vision data. Due to the limitation of computational resources, some special scenarios still rely on traditional machine learning methods. However, these high-dimensional visual data lead to great challenges for traditional machine learning methods. Therefore, we propose a Lite Fireworks Algorithm with Fractal Dimension constraint for feature selection (LFWA+FD) and use it to solve the feature selection problem driven by robot vision. The "LFWA+FD" focuses on searching the ideal feature subset by simplifying the fireworks algorithm and constraining the dimensionality of selected features by fractal dimensionality, which in turn reduces the approximate features and reduces the noise in the original data to improve the accuracy of the model. The comparative experimental results of two publicly available datasets from UCI show that the proposed method can effectively select a subset of features useful for model inference and remove a large amount of noise noise present in the original data to improve the performance.Comment: International Conference on Pharmaceutical Sciences 202

    A Survey on Particle Swarm Optimization for Association Rule Mining

    Get PDF
    Association rule mining (ARM) is one of the core techniques of data mining to discover potentially valuable association relationships from mixed datasets. In the current research, various heuristic algorithms have been introduced into ARM to address the high computation time of traditional ARM. Although a more detailed review of the heuristic algorithms based on ARM is available, this paper differs from the existing reviews in that we expected it to provide a more comprehensive and multi-faceted survey of emerging research, which could provide a reference for researchers in the field to help them understand the state-of-the-art PSO-based ARM algorithms. In this paper, we review the existing research results. Heuristic algorithms for ARM were divided into three main groups, including biologically inspired, physically inspired, and other algorithms. Additionally, different types of ARM and their evaluation metrics are described in this paper, and the current status of the improvement in PSO algorithms is discussed in stages, including swarm initialization, algorithm parameter optimization, optimal particle update, and velocity and position updates. Furthermore, we discuss the applications of PSO-based ARM algorithms and propose further research directions by exploring the existing problems.publishedVersio

    Enhanced Fireworks Algorithm-Auto Disturbance Rejection Control Algorithm for Robot Fish Path Tracking

    Get PDF
    The robot fish is affected by many unknown internal and external interference factors when it performs path tracking in unknown waters. It was proposed that a path tracking method based on the EFWA-ADRC (enhanced fireworks algorithmauto disturbance rejection control) to obtain high-quality tracking effect. ADRC has strong adaptability and robustness. It is an effective method to solve the control problems of nonlinearity, uncertainty, strong interference, strong coupling and large time lag. For the optimization of parameters in ADRC, the enhanced fireworks algorithm (EFWA) is used for online adjustment. It is to improve the anti-interference of the robot fish in the path tracking process. The multi-joint bionic robot fish was taken as the research object in the paper. It was established a path tracking error model in the Serret-Frenet coordinate system combining the mathematical model of robotic fish. It was focused on the forward speed and steering speed control rate. It was constructed that the EFWA-ADRC based path tracking system. Finally, the simulation and experimental results show that the control method based on EFWAADRC and conventional ADRC makes the robotic fish track the given path at 2:8s and 3:3s respectively, and the tracking error is kept within plus or minus 0:09m and 0:1m respectively. The new control method tracking steady-state error was reduces by 10% compared with the conventional ADRC. It was proved that the proposed EFWA-ADRC controller has better control effect on the controlled system, which is subject to strong interference

    A review of recent advances in metaheuristic maximum power point tracking algorithms for solar photovoltaic systems under the partial-shading conditions

    Get PDF
    Several maximum power point (MPP) tracking algorithms for solar power or photovoltaic (PV) systems concerning partial-shading conditions have been studied and reviewed using conventional or advanced methods. The standard MPPT algorithms for partial-shading conditions are: (i) conventional; (ii) mathematics-based; (iii) artificial intelligence; (iv) metaheuristic. The main problems of the conventional methods are poor power harvesting and low efficiency due to many local maximum appearances and difficulty in determining the global maximum tracking. This paper presents MPPT algorithms for partial-shading conditions, mainly metaheuristics algorithms. Firstly, the four classification algorithms will be reviewed. Secondly, an in-depth review of the metaheuristic algorithms is presented. Remarkably, 40 metaheuristic algorithms are classified into four classes for a more detailed discussion; physics-based, biology-based, sociology-based, and human behavior-based are presented and evaluated comprehensively. Furthermore, the performance comparison of the 40 metaheuristic algorithms in terms of complexity level, converter type, sensor requirement, steady-state oscillation, tracking capability, cost, and grid connection are synthesized. Generally, readers can choose the most appropriate algorithms according to application necessities and system conditions. This study can be considered a valuable reference for in-depth works on current related issues

    Development of Hybrid PS-FW GMPPT Algorithm for improving PV System Performance Under Partial Shading Conditions

    Get PDF
    A global maximum power point tracking (MPPT) algorithm hybrid based on Particle Swarm Fireworks (PS-FW) algorithm is proposed which is formed with Particle Swarm Optimization and Fireworks Algorithm. The algorithm tracks the global maximum power point (MPP) when conventional MPPT methods fail due to occurrence of partial shading conditions. With the applied strategies and operators, PS-FW algorithm obtains superior performances verified under simulation and experimental setup with multiple cases of shading patterns

    A survey of swarm intelligence for dynamic optimization: algorithms and applications

    Get PDF
    Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bacterial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address stationary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world problems have a dynamic environment that changes over time. For such dynamic optimization problems (DOPs), it is difficult for a conventional SI algorithm to track the changing optimum once the algorithm has converged on a solution. In the last two decades, there has been a growing interest of addressing DOPs using SI algorithms due to their adaptation capabilities. This paper presents a broad review on SI dynamic optimization (SIDO) focused on several classes of problems, such as discrete, continuous, constrained, multi-objective and classification problems, and real-world applications. In addition, this paper focuses on the enhancement strategies integrated in SI algorithms to address dynamic changes, the performance measurements and benchmark generators used in SIDO. Finally, some considerations about future directions in the subject are given

    Metaheuristic Optimization of Power and Energy Systems: Underlying Principles and Main Issues of the `Rush to Heuristics'

    Get PDF
    In the power and energy systems area, a progressive increase of literature contributions that contain applications of metaheuristic algorithms is occurring. In many cases, these applications are merely aimed at proposing the testing of an existing metaheuristic algorithm on a specific problem, claiming that the proposed method is better than other methods that are based on weak comparisons. This ‘rush to heuristics’ does not happen in the evolutionary computation domain, where the rules for setting up rigorous comparisons are stricter but are typical of the domains of application of the metaheuristics. This paper considers the applications to power and energy systems and aims at providing a comprehensive view of the main issues that concern the use of metaheuristics for global optimization problems. A set of underlying principles that characterize the metaheuristic algorithms is presented. The customization of metaheuristic algorithms to fit the constraints of specific problems is discussed. Some weaknesses and pitfalls that are found in literature contributions are identified, and specific guidelines are provided regarding how to prepare sound contributions on the application of metaheuristic algorithms to specific problems
    corecore