11,718 research outputs found

    Electronic Structure of the YH3 Phase from Angle-Resolved Photoemission Spectroscopy

    Full text link
    Yttrium can be loaded with hydrogen up to high concentrations causing dramatic structural and electronic changes of the host lattice. We report on angle-resolved photoemission experiments of the Y trihydride phase. Most importantly, we find the absence of metal d-bands at the Fermi level and a set of flat, H-induced bands located at much higher binding energy than predicted, indicating an increased electron affinity at H sites

    Near-ideal spontaneous photon sources in silicon quantum photonics

    Get PDF
    While integrated photonics is a robust platform for quantum information processing, architectures for photonic quantum computing place stringent demands on high quality information carriers. Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, and that are suitable for mass-manufacture, have been elusive. Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements. Our photon sources are fabricated in silicon using mature processes, and exploit a novel dual-mode pump-delayed excitation scheme to engineer the emission of spectrally pure photon pairs through intermodal spontaneous four-wave mixing in low-loss spiralled multi-mode waveguides. We simultaneously measure a spectral purity of 0.9904±0.00060.9904 \pm 0.0006, a mutual indistinguishably of 0.987±0.0020.987 \pm 0.002, and >90%>90\% intrinsic heralding efficiency. We measure on-chip quantum interference with a visibility of 0.96±0.020.96 \pm 0.02 between heralded photons from different sources. These results represent a decisive step for scaling quantum information processing in integrated photonics

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching
    corecore