741 research outputs found

    Generative Adversarial Estimation of Channel Covariance in Vehicular Millimeter Wave Systems

    Full text link
    Enabling highly-mobile millimeter wave (mmWave) systems is challenging because of the huge training overhead associated with acquiring the channel knowledge or designing the narrow beams. Current mmWave beam training and channel estimation techniques do not normally make use of the prior beam training or channel estimation observations. Intuitively, though, the channel matrices are functions of the various elements of the environment. Learning these functions can dramatically reduce the training overhead needed to obtain the channel knowledge. In this paper, a novel solution that exploits machine learning tools, namely conditional generative adversarial networks (GAN), is developed to learn these functions between the environment and the channel covariance matrices. More specifically, the proposed machine learning model treats the covariance matrices as 2D images and learns the mapping function relating the uplink received pilots, which act as RF signatures of the environment, and these images. Simulation results show that the developed strategy efficiently predicts the covariance matrices of the large-dimensional mmWave channels with negligible training overhead.Comment: to appear in Asilomar Conference on Signals, Systems, and Computers, Oct. 201

    RADIANCE: Radio-Frequency Adversarial Deep-learning Inference for Automated Network Coverage Estimation

    Full text link
    Radio-frequency coverage maps (RF maps) are extensively utilized in wireless networks for capacity planning, placement of access points and base stations, localization, and coverage estimation. Conducting site surveys to obtain RF maps is labor-intensive and sometimes not feasible. In this paper, we propose radio-frequency adversarial deep-learning inference for automated network coverage estimation (RADIANCE), a generative adversarial network (GAN) based approach for synthesizing RF maps in indoor scenarios. RADIANCE utilizes a semantic map, a high-level representation of the indoor environment to encode spatial relationships and attributes of objects within the environment and guide the RF map generation process. We introduce a new gradient-based loss function that computes the magnitude and direction of change in received signal strength (RSS) values from a point within the environment. RADIANCE incorporates this loss function along with the antenna pattern to capture signal propagation within a given indoor configuration and generate new patterns under new configuration, antenna (beam) pattern, and center frequency. Extensive simulations are conducted to compare RADIANCE with ray-tracing simulations of RF maps. Our results show that RADIANCE achieves a mean average error (MAE) of 0.09, root-mean-squared error (RMSE) of 0.29, peak signal-to-noise ratio (PSNR) of 10.78, and multi-scale structural similarity index (MS-SSIM) of 0.80.Comment: 6 pages, 6 figure

    Physical-Layer Authentication Using Channel State Information and Machine Learning

    Get PDF
    Strong authentication in an interconnected wireless environment continues to be an important, but sometimes elusive goal. Research in physical-layer authentication using channel features holds promise as a technique to improve network security for a variety of devices. We propose the use of machine learning and measured multiple-input multiple-output communications channel information to make a decision on whether or not to authenticate a particular device. This work analyzes the use of received channel state information from the wireless environment and demonstrates the employment of a generative adversarial neural network (GAN) trained with received channel data to authenticate a transmitting device. We compared a variety of machine learning techniques and found that the local outlier factor (LOF) algorithm reached 100% accuracy at lower signal to noise ratios (SNR) than other algorithms. However, before LOF reached 100%, we also show that the GAN was more accurate at lower SNR levels.Comment: Submitted to 14th International Conference on Signal Processing and Communication Systems (ICSPCS) 202

    A Holistic Investigation on Terahertz Propagation and Channel Modeling Toward Vertical Heterogeneous Networks

    Full text link
    User-centric and low latency communications can be enabled not only by small cells but also through ubiquitous connectivity. Recently, the vertical heterogeneous network (V-HetNet) architecture is proposed to backhaul/fronthaul a large number of small cells. Like an orchestra, the V-HetNet is a polyphony of different communication ensembles, including geostationary orbit (GEO), and low-earth orbit (LEO) satellites (e.g., CubeSats), and networked flying platforms (NFPs) along with terrestrial communication links. In this study, we propose the Terahertz (THz) communications to enable the elements of V-HetNets to function in harmony. As THz links offer a large bandwidth, leading to ultra-high data rates, it is suitable for backhauling and fronthauling small cells. Furthermore, THz communications can support numerous applications from inter-satellite links to in-vivo nanonetworks. However, to savor this harmony, we need accurate channel models. In this paper, the insights obtained through our measurement campaigns are highlighted, to reveal the true potential of THz communications in V-HetNets.Comment: It has been accepted for the publication in IEEE Communications Magazin
    corecore