14,060 research outputs found

    Asymptotic Sum-Capacity of Random Gaussian Interference Networks Using Interference Alignment

    Full text link
    We consider a dense n-user Gaussian interference network formed by paired transmitters and receivers placed independently at random in Euclidean space. Under natural conditions on the node position distributions and signal attenuation, we prove convergence in probability of the average per-user capacity C_Sigma/n to 1/2 E log(1 + 2SNR). The achievability result follows directly from results based on an interference alignment scheme presented in recent work of Nazer et al. Our main contribution comes through the converse result, motivated by ideas of `bottleneck links' developed in recent work of Jafar. An information theoretic argument gives a capacity bound on such bottleneck links, and probabilistic counting arguments show there are sufficiently many such links to tightly bound the sum-capacity of the whole network.Comment: 5 pages; to appear at ISIT 201

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201

    Absence of phase coexistence in disordered exclusion processes with bypassing

    Full text link
    Adding quenched disorder to the one-dimensional asymmetric exclusion process is known to always induce phase separation. To test the robustness of this result, we introduce two modifications of the process that allow particles to bypass defect sites. In the first case, particles are allowed to jump l sites ahead with the probability p_l ~ l^-(1+sigma), where sigma>1. By using Monte Carlo simulations and the mean-field approach, we show that phase coexistence may be absent up to enormously large system sizes, e.g. lnL~50, but is present in the thermodynamic limit, as in the short-range case. In the second case, we consider the exclusion process on a quadratic lattice with symmetric and totally asymmetric hopping perpendicular to and along the direction of driving, respectively. We show that in an anisotropic limit of this model a regime may be found where phase coexistence is absent.Comment: 18 pages, 10 figures, to appear in JSTA

    An asymptotic existence result on compressed sensing matrices

    Get PDF
    For any rational number hh and all sufficiently large nn we give a deterministic construction for an n×hnn\times \lfloor hn\rfloor compressed sensing matrix with (1,t)(\ell_1,t)-recoverability where t=O(n)t=O(\sqrt{n}). Our method uses pairwise balanced designs and complex Hadamard matrices in the construction of ϵ\epsilon-equiangular frames, which we introduce as a generalisation of equiangular tight frames. The method is general and produces good compressed sensing matrices from any appropriately chosen pairwise balanced design. The (1,t)(\ell_1,t)-recoverability performance is specified as a simple function of the parameters of the design. To obtain our asymptotic existence result we prove new results on the existence of pairwise balanced designs in which the numbers of blocks of each size are specified.Comment: 15 pages, no figures. Minor improvements and updates in February 201

    When is a network epidemic hard to eliminate?

    Full text link
    We consider the propagation of a contagion process (epidemic) on a network and study the problem of dynamically allocating a fixed curing budget to the nodes of the graph, at each time instant. For bounded degree graphs, we provide a lower bound on the expected time to extinction under any such dynamic allocation policy, in terms of a combinatorial quantity that we call the resistance of the set of initially infected nodes, the available budget, and the number of nodes n. Specifically, we consider the case of bounded degree graphs, with the resistance growing linearly in n. We show that if the curing budget is less than a certain multiple of the resistance, then the expected time to extinction grows exponentially with n. As a corollary, if all nodes are initially infected and the CutWidth of the graph grows linearly, while the curing budget is less than a certain multiple of the CutWidth, then the expected time to extinction grows exponentially in n. The combination of the latter with our prior work establishes a fairly sharp phase transition on the expected time to extinction (sub-linear versus exponential) based on the relation between the CutWidth and the curing budget

    Smooth Multirate Multicast Congestion Control

    Full text link
    A significant impediment to deployment of multicast services is the daunting technical complexity of developing, testing and validating congestion control protocols fit for wide-area deployment. Protocols such as pgmcc and TFMCC have recently made considerable progress on the single rate case, i.e. where one dynamic reception rate is maintained for all receivers in the session. However, these protocols have limited applicability, since scaling to session sizes beyond tens of participants necessitates the use of multiple rate protocols. Unfortunately, while existing multiple rate protocols exhibit better scalability, they are both less mature than single rate protocols and suffer from high complexity. We propose a new approach to multiple rate congestion control that leverages proven single rate congestion control methods by orchestrating an ensemble of independently controlled single rate sessions. We describe SMCC, a new multiple rate equation-based congestion control algorithm for layered multicast sessions that employs TFMCC as the primary underlying control mechanism for each layer. SMCC combines the benefits of TFMCC (smooth rate control, equation-based TCP friendliness) with the scalability and flexibility of multiple rates to provide a sound multiple rate multicast congestion control policy.National Science Foundation (ANI-9986397, ANI-0092196

    The Ergodic Capacity of Phase-Fading Interference Networks

    Full text link
    We identify the role of equal strength interference links as bottlenecks on the ergodic sum capacity of a KK user phase-fading interference network, i.e., an interference network where the fading process is restricted primarily to independent and uniform phase variations while the channel magnitudes are held fixed across time. It is shown that even though there are K(K1)K(K-1) cross-links, only about K/2K/2 disjoint and equal strength interference links suffice to determine the capacity of the network regardless of the strengths of the rest of the cross channels. This scenario is called a \emph{minimal bottleneck state}. It is shown that ergodic interference alignment is capacity optimal for a network in a minimal bottleneck state. The results are applied to large networks. It is shown that large networks are close to bottleneck states with a high probability, so that ergodic interference alignment is close to optimal for large networks. Limitations of the notion of bottleneck states are also highlighted for channels where both the phase and the magnitudes vary with time. It is shown through an example that for these channels, joint coding across different bottleneck states makes it possible to circumvent the capacity bottlenecks.Comment: 19 page

    Sharp phase transition in the random stirring model on trees

    Full text link
    We establish that the phase transition for infinite cycles in the random stirring model on an infinite regular tree of high degree is sharp. That is, we prove that there exists d_0 such that, for any d \geq d_0, the set of parameter values at which the random stirring model on the rooted regular tree with offspring degree d almost surely contains an infinite cycle consists of a semi-infinite interval. The critical point at the left-hand end of this interval is at least 1/d + 1/(2d^2) and at most 1/d + 2/(d^2). This version is a major revision, with a much shorter proof. Principal among the changes are a reworking of the argument in Section 4 of the old version, which was proposed by a referee, and the use of a simpler means of handling a boundary case, which eliminates the previous Section 6.Comment: 20 pages, three figures. A short explanation of Proposition 3.2 has been added. Probab. Theory and Related Fields, to appea

    On the Role of Mobility for Multi-message Gossip

    Full text link
    We consider information dissemination in a large nn-user wireless network in which kk users wish to share a unique message with all other users. Each of the nn users only has knowledge of its own contents and state information; this corresponds to a one-sided push-only scenario. The goal is to disseminate all messages efficiently, hopefully achieving an order-optimal spreading rate over unicast wireless random networks. First, we show that a random-push strategy -- where a user sends its own or a received packet at random -- is order-wise suboptimal in a random geometric graph: specifically, Ω(n)\Omega(\sqrt{n}) times slower than optimal spreading. It is known that this gap can be closed if each user has "full" mobility, since this effectively creates a complete graph. We instead consider velocity-constrained mobility where at each time slot the user moves locally using a discrete random walk with velocity v(n)v(n) that is much lower than full mobility. We propose a simple two-stage dissemination strategy that alternates between individual message flooding ("self promotion") and random gossiping. We prove that this scheme achieves a close to optimal spreading rate (within only a logarithmic gap) as long as the velocity is at least v(n)=ω(logn/k)v(n)=\omega(\sqrt{\log n/k}). The key insight is that the mixing property introduced by the partial mobility helps users to spread in space within a relatively short period compared to the optimal spreading time, which macroscopically mimics message dissemination over a complete graph.Comment: accepted to IEEE Transactions on Information Theory, 201
    corecore