22,418 research outputs found

    Which groups are amenable to proving exponent two for matrix multiplication?

    Get PDF
    The Cohn-Umans group-theoretic approach to matrix multiplication suggests embedding matrix multiplication into group algebra multiplication, and bounding ω\omega in terms of the representation theory of the host group. This framework is general enough to capture the best known upper bounds on ω\omega and is conjectured to be powerful enough to prove ω=2\omega = 2, although finding a suitable group and constructing such an embedding has remained elusive. Recently it was shown, by a generalization of the proof of the Cap Set Conjecture, that abelian groups of bounded exponent cannot prove ω=2\omega = 2 in this framework, which ruled out a family of potential constructions in the literature. In this paper we study nonabelian groups as potential hosts for an embedding. We prove two main results: (1) We show that a large class of nonabelian groups---nilpotent groups of bounded exponent satisfying a mild additional condition---cannot prove ω=2\omega = 2 in this framework. We do this by showing that the shrinkage rate of powers of the augmentation ideal is similar to the shrinkage rate of the number of functions over (Z/pZ)n(\mathbb{Z}/p\mathbb{Z})^n that are degree dd polynomials; our proof technique can be seen as a generalization of the polynomial method used to resolve the Cap Set Conjecture. (2) We show that symmetric groups SnS_n cannot prove nontrivial bounds on ω\omega when the embedding is via three Young subgroups---subgroups of the form Sk1×Sk2×⋯×SkℓS_{k_1} \times S_{k_2} \times \dotsb \times S_{k_\ell}---which is a natural strategy that includes all known constructions in SnS_n. By developing techniques for negative results in this paper, we hope to catalyze a fruitful interplay between the search for constructions proving bounds on ω\omega and methods for ruling them out.Comment: 23 pages, 1 figur

    On the Communication Complexity of Secure Computation

    Full text link
    Information theoretically secure multi-party computation (MPC) is a central primitive of modern cryptography. However, relatively little is known about the communication complexity of this primitive. In this work, we develop powerful information theoretic tools to prove lower bounds on the communication complexity of MPC. We restrict ourselves to a 3-party setting in order to bring out the power of these tools without introducing too many complications. Our techniques include the use of a data processing inequality for residual information - i.e., the gap between mutual information and G\'acs-K\"orner common information, a new information inequality for 3-party protocols, and the idea of distribution switching by which lower bounds computed under certain worst-case scenarios can be shown to apply for the general case. Using these techniques we obtain tight bounds on communication complexity by MPC protocols for various interesting functions. In particular, we show concrete functions that have "communication-ideal" protocols, which achieve the minimum communication simultaneously on all links in the network. Also, we obtain the first explicit example of a function that incurs a higher communication cost than the input length in the secure computation model of Feige, Kilian and Naor (1994), who had shown that such functions exist. We also show that our communication bounds imply tight lower bounds on the amount of randomness required by MPC protocols for many interesting functions.Comment: 37 page

    Efficiently Detecting Torsion Points and Subtori

    Full text link
    Suppose X is the complex zero set of a finite collection of polynomials in Z[x_1,...,x_n]. We show that deciding whether X contains a point all of whose coordinates are d_th roots of unity can be done within NP^NP (relative to the sparse encoding), under a plausible assumption on primes in arithmetic progression. In particular, our hypothesis can still hold even under certain failures of the Generalized Riemann Hypothesis, such as the presence of Siegel-Landau zeroes. Furthermore, we give a similar (but UNconditional) complexity upper bound for n=1. Finally, letting T be any algebraic subgroup of (C^*)^n we show that deciding whether X contains T is coNP-complete (relative to an even more efficient encoding),unconditionally. We thus obtain new non-trivial families of multivariate polynomial systems where deciding the existence of complex roots can be done unconditionally in the polynomial hierarchy -- a family of complexity classes lying between PSPACE and P, intimately connected with the P=?NP Problem. We also discuss a connection to Laurent's solution of Chabauty's Conjecture from arithmetic geometry.Comment: 21 pages, no figures. Final version, with additional commentary and references. Also fixes a gap in Theorems 2 (now Theorem 1.3) regarding translated subtor
    • …
    corecore