1,659 research outputs found

    Sparse Fault-Tolerant BFS Trees

    Full text link
    This paper addresses the problem of designing a sparse {\em fault-tolerant} BFS tree, or {\em FT-BFS tree} for short, namely, a sparse subgraph TT of the given network GG such that subsequent to the failure of a single edge or vertex, the surviving part TT' of TT still contains a BFS spanning tree for (the surviving part of) GG. Our main results are as follows. We present an algorithm that for every nn-vertex graph GG and source node ss constructs a (single edge failure) FT-BFS tree rooted at ss with O(n \cdot \min\{\Depth(s), \sqrt{n}\}) edges, where \Depth(s) is the depth of the BFS tree rooted at ss. This result is complemented by a matching lower bound, showing that there exist nn-vertex graphs with a source node ss for which any edge (or vertex) FT-BFS tree rooted at ss has Ω(n3/2)\Omega(n^{3/2}) edges. We then consider {\em fault-tolerant multi-source BFS trees}, or {\em FT-MBFS trees} for short, aiming to provide (following a failure) a BFS tree rooted at each source sSs\in S for some subset of sources SVS\subseteq V. Again, tight bounds are provided, showing that there exists a poly-time algorithm that for every nn-vertex graph and source set SVS \subseteq V of size σ\sigma constructs a (single failure) FT-MBFS tree T(S)T^*(S) from each source siSs_i \in S, with O(σn3/2)O(\sqrt{\sigma} \cdot n^{3/2}) edges, and on the other hand there exist nn-vertex graphs with source sets SVS \subseteq V of cardinality σ\sigma, on which any FT-MBFS tree from SS has Ω(σn3/2)\Omega(\sqrt{\sigma}\cdot n^{3/2}) edges. Finally, we propose an O(logn)O(\log n) approximation algorithm for constructing FT-BFS and FT-MBFS structures. The latter is complemented by a hardness result stating that there exists no Ω(logn)\Omega(\log n) approximation algorithm for these problems under standard complexity assumptions

    NP-Completeness, Proof Systems, and Disjoint NP-Pairs

    Get PDF

    Does Advice Help to Prove Propositional Tautologies?

    Get PDF
    One of the starting points of propositional proof complexity is the seminal paper by Cook and Reckhow [6], where they defined propositional proof systems as poly-time computable functions which have all propositional tautologies as their range. Motivated by provability consequences in bounded arithmetic, Cook and Krajíček [5] have recently started the investigation of proof systems which are computed by poly-time functions using advice. While this yields a more powerful model, it is also less directly applicable in practice. In this note we investigate the question whether the usage of advice in propositional proof systems can be simplified or even eliminated. While in principle, the advice can be very complex, we show that proof systems with logarithmic advice are also computable in poly-time with access to a sparse NP-oracle. In addition, we show that if advice is ”not very helpful” for proving tautologies, then there exists an optimal propositional proof system without advice. In our main result, we prove that advice can be transferred from the proof to the formula, leading to an easier computational model. We obtain this result by employing a recent technique by Buhrman and Hitchcock [4]

    A Casual Tour Around a Circuit Complexity Bound

    Full text link
    I will discuss the recent proof that the complexity class NEXP (nondeterministic exponential time) lacks nonuniform ACC circuits of polynomial size. The proof will be described from the perspective of someone trying to discover it.Comment: 21 pages, 2 figures. An earlier version appeared in SIGACT News, September 201
    corecore