244 research outputs found

    A Note on Solid Coloring of Pure Simplicial Complexes

    Get PDF
    We establish a simple generalization of a known result in the plane. The simplices in any pure simplicial complex in R^d may be colored with d+1 colors so that no two simplices that share a (d-1)-facet have the same color. In R^2 this says that any planar map all of whose faces are triangles may be 3-colored, and in R^3 it says that tetrahedra in a collection may be "solid 4-colored" so that no two glued face-to-face receive the same color.Comment: 11 pages, 6 figure

    Branched Coverings, Triangulations, and 3-Manifolds

    Full text link
    A canonical branched covering over each sufficiently good simplicial complex is constructed. Its structure depends on the combinatorial type of the complex. In this way, each closed orientable 3-manifold arises as a branched covering over the 3-sphere from some triangulation of S^3. This result is related to a theorem of Hilden and Montesinos. The branched coverings introduced admit a rich theory in which the group of projectivities plays a central role.Comment: v2: several changes to the text body; minor correction

    Manifolds of isospectral arrow matrices

    Full text link
    An arrow matrix is a matrix with zeroes outside the main diagonal, first row, and first column. We consider the space MStn,λM_{St_n,\lambda} of Hermitian arrow (n+1)×(n+1)(n+1)\times (n+1)-matrices with fixed simple spectrum λ\lambda. We prove that this space is a smooth 2n2n-manifold, and its smooth structure is independent on the spectrum. Next, this manifold carries the locally standard torus action: we describe the topology and combinatorics of its orbit space. If n⩾3n\geqslant 3, the orbit space MStn,λ/TnM_{St_n,\lambda}/T^n is not a polytope, hence this manifold is not quasitoric. However, there is a natural permutation action on MStn,λM_{St_n,\lambda} which induces the combined action of a semidirect product Tn⋊ΣnT^n\rtimes\Sigma_n. The orbit space of this large action is a simple polytope. The structure of this polytope is described in the paper. In case n=3n=3, the space MSt3,λ/T3M_{St_3,\lambda}/T^3 is a solid torus with boundary subdivided into hexagons in a regular way. This description allows to compute the cohomology ring and equivariant cohomology ring of the 6-dimensional manifold MSt3,λM_{St_3,\lambda} using the general theory developed by the first author. This theory is also applied to a certain 66-dimensional manifold called the twin of MSt3,λM_{St_3,\lambda}. The twin carries a half-dimensional torus action and has nontrivial tangent and normal bundles.Comment: 29 pages, 8 figure
    • …
    corecore