3 research outputs found

    Optimal No-regret Learning in Repeated First-price Auctions

    Full text link
    We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, the bidder faces a challenging dilemma: if she wins the bid--the only way to achieve positive payoffs--then she is not able to observe the highest bid of the other bidders, which we assume is iid drawn from an unknown distribution. This dilemma, despite being reminiscent of the exploration-exploitation trade-off in contextual bandits, cannot directly be addressed by the existing UCB or Thompson sampling algorithms in that literature, mainly because contrary to the standard bandits setting, when a positive reward is obtained here, nothing about the environment can be learned. In this paper, by exploiting the structural properties of first-price auctions, we develop the first learning algorithm that achieves O(Tlog2T)O(\sqrt{T}\log^2 T) regret bound when the bidder's private values are stochastically generated. We do so by providing an algorithm on a general class of problems, which we call monotone group contextual bandits, where the same regret bound is established under stochastically generated contexts. Further, by a novel lower bound argument, we characterize an Ω(T2/3)\Omega(T^{2/3}) lower bound for the case where the contexts are adversarially generated, thus highlighting the impact of the contexts generation mechanism on the fundamental learning limit. Despite this, we further exploit the structure of first-price auctions and develop a learning algorithm that operates sample-efficiently (and computationally efficiently) in the presence of adversarially generated private values. We establish an O(Tlog3T)O(\sqrt{T}\log^3 T) regret bound for this algorithm, hence providing a complete characterization of optimal learning guarantees for this problem

    The multi-armed bandit problem with covariates

    Full text link
    We consider a multi-armed bandit problem in a setting where each arm produces a noisy reward realization which depends on an observable random covariate. As opposed to the traditional static multi-armed bandit problem, this setting allows for dynamically changing rewards that better describe applications where side information is available. We adopt a nonparametric model where the expected rewards are smooth functions of the covariate and where the hardness of the problem is captured by a margin parameter. To maximize the expected cumulative reward, we introduce a policy called Adaptively Binned Successive Elimination (abse) that adaptively decomposes the global problem into suitably "localized" static bandit problems. This policy constructs an adaptive partition using a variant of the Successive Elimination (se) policy. Our results include sharper regret bounds for the se policy in a static bandit problem and minimax optimal regret bounds for the abse policy in the dynamic problem.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1101 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore