8,335 research outputs found

    Minimum-Cost Coverage of Point Sets by Disks

    Full text link
    We consider a class of geometric facility location problems in which the goal is to determine a set X of disks given by their centers (t_j) and radii (r_j) that cover a given set of demand points Y in the plane at the smallest possible cost. We consider cost functions of the form sum_j f(r_j), where f(r)=r^alpha is the cost of transmission to radius r. Special cases arise for alpha=1 (sum of radii) and alpha=2 (total area); power consumption models in wireless network design often use an exponent alpha>2. Different scenarios arise according to possible restrictions on the transmission centers t_j, which may be constrained to belong to a given discrete set or to lie on a line, etc. We obtain several new results, including (a) exact and approximation algorithms for selecting transmission points t_j on a given line in order to cover demand points Y in the plane; (b) approximation algorithms (and an algebraic intractability result) for selecting an optimal line on which to place transmission points to cover Y; (c) a proof of NP-hardness for a discrete set of transmission points in the plane and any fixed alpha>1; and (d) a polynomial-time approximation scheme for the problem of computing a minimum cost covering tour (MCCT), in which the total cost is a linear combination of the transmission cost for the set of disks and the length of a tour/path that connects the centers of the disks.Comment: 10 pages, 4 figures, Latex, to appear in ACM Symposium on Computational Geometry 200

    Approximation Algorithms for Geometric Covering Problems for Disks and Squares

    Get PDF
    Geometric covering is a well-studied topic in computational geometry. We study three covering problems: Disjoint Unit-Disk Cover, Depth-(≤ K) Packing and Red-Blue Unit-Square Cover. In the Disjoint Unit-Disk Cover problem, we are given a point set and want to cover the maximum number of points using disjoint unit disks. We prove that the problem is NP-complete and give a polynomial-time approximation scheme (PTAS) for it. In Depth-(≤ K) Packing for Arbitrary-Size Disks/Squares, we are given a set of arbitrary-size disks/squares, and want to find a subset with depth at most K and maximizing the total area. We prove a depth reduction theorem and present a PTAS. In Red-Blue Unit-Square Cover, we are given a red point set, a blue point set and a set of unit squares, and want to find a subset of unit squares to cover all the blue points and the minimum number of red points. We prove that the problem is NP-hard, and give a PTAS for it. A "mod-one" trick we introduce can be applied to several other covering problems on unit squares
    • …
    corecore