2,502 research outputs found

    Lattice generalization of the Dirac equation to general spin and the role of the flat band

    Full text link
    We provide a novel setup for generalizing the two-dimensional pseudospin S=1/2 Dirac equation, arising in graphene's honeycomb lattice, to general pseudospin-S. We engineer these band structures as a nearest-neighbor hopping Hamiltonian involving stacked triangular lattices. We obtain multi-layered low energy excitations around half-filling described by a two-dimensional Dirac equation of the form H=v_F S\cdot p, where S represents an arbitrary spin-S (integer or half-integer). For integer-S, a flat band appears, whose presence modifies qualitatively the response of the system. Among physical observables, the density of states, the optical conductivity and the peculiarities of Klein tunneling are investigated. We also study Chern numbers as well as the zero-energy Landau level degeneracy. By changing the stacking pattern, the topological properties are altered significantly, with no obvious analogue in multilayer graphene stacks.Comment: 14 pages, 6 figures, 1 table, revised version with a new section on experimental possibilitie

    A constant-time algorithm for middle levels Gray codes

    Get PDF
    For any integer n≥1n\geq 1 a middle levels Gray code is a cyclic listing of all nn-element and (n+1)(n+1)-element subsets of {1,2,…,2n+1}\{1,2,\ldots,2n+1\} such that any two consecutive subsets differ in adding or removing a single element. The question whether such a Gray code exists for any n≥1n\geq 1 has been the subject of intensive research during the last 30 years, and has been answered affirmatively only recently [T. M\"utze. Proof of the middle levels conjecture. Proc. London Math. Soc., 112(4):677--713, 2016]. In a follow-up paper [T. M\"utze and J. Nummenpalo. An efficient algorithm for computing a middle levels Gray code. To appear in ACM Transactions on Algorithms, 2018] this existence proof was turned into an algorithm that computes each new set in the Gray code in time O(n)\mathcal{O}(n) on average. In this work we present an algorithm for computing a middle levels Gray code in optimal time and space: each new set is generated in time O(1)\mathcal{O}(1) on average, and the required space is O(n)\mathcal{O}(n)

    Coordinated Robot Navigation via Hierarchical Clustering

    Get PDF
    We introduce the use of hierarchical clustering for relaxed, deterministic coordination and control of multiple robots. Traditionally an unsupervised learning method, hierarchical clustering offers a formalism for identifying and representing spatially cohesive and segregated robot groups at different resolutions by relating the continuous space of configurations to the combinatorial space of trees. We formalize and exploit this relation, developing computationally effective reactive algorithms for navigating through the combinatorial space in concert with geometric realizations for a particular choice of hierarchical clustering method. These constructions yield computationally effective vector field planners for both hierarchically invariant as well as transitional navigation in the configuration space. We apply these methods to the centralized coordination and control of nn perfectly sensed and actuated Euclidean spheres in a dd-dimensional ambient space (for arbitrary nn and dd). Given a desired configuration supporting a desired hierarchy, we construct a hybrid controller which is quadratic in nn and algebraic in dd and prove that its execution brings all but a measure zero set of initial configurations to the desired goal with the guarantee of no collisions along the way.Comment: 29 pages, 13 figures, 8 tables, extended version of a paper in preparation for submission to a journa

    Reduced Chern-Simons Quiver Theories and Cohomological 3-Algebra Models

    Full text link
    We study the BPS spectrum and vacuum moduli spaces in dimensional reductions of Chern-Simons-matter theories with N>=2 supersymmetry to zero dimensions. Our main example is a matrix model version of the ABJM theory which we relate explicitly to certain reduced 3-algebra models. We find the explicit maps from Chern-Simons quiver matrix models to dual IKKT matrix models. We address the problem of topologically twisting the ABJM matrix model, and along the way construct a new twist of the IKKT model. We construct a cohomological matrix model whose partition function localizes onto a moduli space specified by 3-algebra relations which live in the double of the conifold quiver. It computes an equivariant index enumerating framed BPS states with specified R-charges which can be expressed as a combinatorial sum over certain filtered pyramid partitions.Comment: 47 page
    • …
    corecore