3,875 research outputs found

    A note on dominating cycles in 2-connected graphs

    Get PDF
    Let G be a 2-connected graph on n vertices such that d(x) + d(y) + d(z) n for all triples of independent vertices x, y, z. We prove that every longest cycle in G is a dominating cycle unless G is a spanning subgraph of a graph belonging to one of four easily specified classes of graphs

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Edge-dominating cycles, k-walks and Hamilton prisms in 2K22K_2-free graphs

    Full text link
    We show that an edge-dominating cycle in a 2K22K_2-free graph can be found in polynomial time; this implies that every 1/(k-1)-tough 2K22K_2-free graph admits a k-walk, and it can be found in polynomial time. For this class of graphs, this proves a long-standing conjecture due to Jackson and Wormald (1990). Furthermore, we prove that for any \epsilon>0 every (1+\epsilon)-tough 2K22K_2-free graph is prism-Hamiltonian and give an effective construction of a Hamiltonian cycle in the corresponding prism, along with few other similar results.Comment: LaTeX, 8 page

    Long cycles, degree sums and neighborhood unions

    Get PDF
    AbstractFor a graph G, define the parameters α(G)=max{|S| |S is an independent set of vertices of G}, σk(G)=min{∑ki=1d(vi)|{v1,…,vk} is an independent set} and NCk(G)= min{|∪ki=1 N(vi)∥{v1,…,vk} is an independent set} (k⩾2). It is shown that every 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,n+NCr+5+∈(n+r)(G)-α(G)}, where ε(i)=3(⌈13i⌉−13i). This result extends previous results in Bauer et al. (1989/90), Faßbender (1992) and Flandrin et al. (1991). It is also shown that a 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,2NC⌊18(n+6r+17)⌋(G)}. Analogous results are established for 2-connected graphs

    Polynomial algorithms that prove an NP-hard hypothesis implies an NP-hard conclusion

    Get PDF
    A number of results in Hamiltonian graph theory are of the form P\mathcal{P}1_{1} implies P\mathcal{P}2_{2}, where P\mathcal{P}1_{1} is a property of graphs that is NP-hard and P\mathcal{P}2_{2} is a cycle structure property of graphs that is also NP-hard. Such a theorem is the well-known Chv\'{a}tal-Erd\"{o}s Theorem, which states that every graph GG with α≤κ\alpha \leq \kappa is Hamiltonian. Here κ\kappa is the vertex connectivity of GG and α\alpha is the cardinality of a largest set of independent vertices of GG. In another paper Chv\'{a}tal points out that the proof of this result is in fact a polynomial time construction that either produces a Hamilton cycle or a set of more than κ\kappa independent vertices. In this note we point out that other theorems in Hamiltonian graph theory have a similar character. In particular, we present a constructive proof of the well-known theorem of Jung for graphs on 1616 or more vertices.. \u

    Long cycles in graphs with large degree sums and neighborhood unions

    Get PDF
    We present and prove several results concerning the length of longest cycles in 2-connected or 1-tough graphs with large degree sums. These results improve many known results on long cycles in these graphs. We also consider the sharpness of the results and discuss some possible strengthenings
    • …
    corecore