19,449 research outputs found

    Systematics of Aligned Axions

    Full text link
    We describe a novel technique that renders theories of NN axions tractable, and more generally can be used to efficiently analyze a large class of periodic potentials of arbitrary dimension. Such potentials are complex energy landscapes with a number of local minima that scales as N!\sqrt{N!}, and so for large NN appear to be analytically and numerically intractable. Our method is based on uncovering a set of approximate symmetries that exist in addition to the NN periods. These approximate symmetries, which are exponentially close to exact, allow us to locate the minima very efficiently and accurately and to analyze other characteristics of the potential. We apply our framework to evaluate the diameters of flat regions suitable for slow-roll inflation, which unifies, corrects and extends several forms of "axion alignment" previously observed in the literature. We find that in a broad class of random theories, the potential is smooth over diameters enhanced by N3/2N^{3/2} compared to the typical scale of the potential. A Mathematica implementation of our framework is available online.Comment: 68 pages, 17 figure

    Solving the Closest Vector Problem in 2n2^n Time--- The Discrete Gaussian Strikes Again!

    Get PDF
    We give a 2n+o(n)2^{n+o(n)}-time and space randomized algorithm for solving the exact Closest Vector Problem (CVP) on nn-dimensional Euclidean lattices. This improves on the previous fastest algorithm, the deterministic O~(4n)\widetilde{O}(4^{n})-time and O~(2n)\widetilde{O}(2^{n})-space algorithm of Micciancio and Voulgaris. We achieve our main result in three steps. First, we show how to modify the sampling algorithm from [ADRS15] to solve the problem of discrete Gaussian sampling over lattice shifts, LtL- t, with very low parameters. While the actual algorithm is a natural generalization of [ADRS15], the analysis uses substantial new ideas. This yields a 2n+o(n)2^{n+o(n)}-time algorithm for approximate CVP for any approximation factor γ=1+2o(n/logn)\gamma = 1+2^{-o(n/\log n)}. Second, we show that the approximate closest vectors to a target vector tt can be grouped into "lower-dimensional clusters," and we use this to obtain a recursive reduction from exact CVP to a variant of approximate CVP that "behaves well with these clusters." Third, we show that our discrete Gaussian sampling algorithm can be used to solve this variant of approximate CVP. The analysis depends crucially on some new properties of the discrete Gaussian distribution and approximate closest vectors, which might be of independent interest

    Algebraic Approach to Physical-Layer Network Coding

    Full text link
    The problem of designing physical-layer network coding (PNC) schemes via nested lattices is considered. Building on the compute-and-forward (C&F) relaying strategy of Nazer and Gastpar, who demonstrated its asymptotic gain using information-theoretic tools, an algebraic approach is taken to show its potential in practical, non-asymptotic, settings. A general framework is developed for studying nested-lattice-based PNC schemes---called lattice network coding (LNC) schemes for short---by making a direct connection between C&F and module theory. In particular, a generic LNC scheme is presented that makes no assumptions on the underlying nested lattice code. C&F is re-interpreted in this framework, and several generalized constructions of LNC schemes are given. The generic LNC scheme naturally leads to a linear network coding channel over modules, based on which non-coherent network coding can be achieved. Next, performance/complexity tradeoffs of LNC schemes are studied, with a particular focus on hypercube-shaped LNC schemes. The error probability of this class of LNC schemes is largely determined by the minimum inter-coset distances of the underlying nested lattice code. Several illustrative hypercube-shaped LNC schemes are designed based on Construction A and D, showing that nominal coding gains of 3 to 7.5 dB can be obtained with reasonable decoding complexity. Finally, the possibility of decoding multiple linear combinations is considered and related to the shortest independent vectors problem. A notion of dominant solutions is developed together with a suitable lattice-reduction-based algorithm.Comment: Submitted to IEEE Transactions on Information Theory, July 21, 2011. Revised version submitted Sept. 17, 2012. Final version submitted July 3, 201

    Compute-and-Forward: Harnessing Interference through Structured Codes

    Get PDF
    Interference is usually viewed as an obstacle to communication in wireless networks. This paper proposes a new strategy, compute-and-forward, that exploits interference to obtain significantly higher rates between users in a network. The key idea is that relays should decode linear functions of transmitted messages according to their observed channel coefficients rather than ignoring the interference as noise. After decoding these linear equations, the relays simply send them towards the destinations, which given enough equations, can recover their desired messages. The underlying codes are based on nested lattices whose algebraic structure ensures that integer combinations of codewords can be decoded reliably. Encoders map messages from a finite field to a lattice and decoders recover equations of lattice points which are then mapped back to equations over the finite field. This scheme is applicable even if the transmitters lack channel state information.Comment: IEEE Trans. Info Theory, to appear. 23 pages, 13 figure

    On the Lattice Isomorphism Problem

    Full text link
    We study the Lattice Isomorphism Problem (LIP), in which given two lattices L_1 and L_2 the goal is to decide whether there exists an orthogonal linear transformation mapping L_1 to L_2. Our main result is an algorithm for this problem running in time n^{O(n)} times a polynomial in the input size, where n is the rank of the input lattices. A crucial component is a new generalized isolation lemma, which can isolate n linearly independent vectors in a given subset of Z^n and might be useful elsewhere. We also prove that LIP lies in the complexity class SZK.Comment: 23 pages, SODA 201
    corecore