147 research outputs found

    Lower bounds on the number of realizations of rigid graphs

    Get PDF
    Computing the number of realizations of a minimally rigid graph is a notoriously difficult problem. Towards this goal, for graphs that are minimally rigid in the plane, we take advantage of a recently published algorithm, which is the fastest available method, although its complexity is still exponential. Combining computational results with the theory of constructing new rigid graphs by gluing, we give a new lower bound on the maximal possible number of (complex) realizations for graphs with a given number of vertices. We extend these ideas to rigid graphs in three dimensions and we derive similar lower bounds, by exploiting data from extensive Gr\"obner basis computations

    Embeddings and immersions of tropical curves

    Full text link
    We construct immersions of trivalent abstract tropical curves in the Euclidean plane and embeddings of all abstract tropical curves in higher dimensional Euclidean space. Since not all curves have an embedding in the plane, we define the tropical crossing number of an abstract tropical curve to be the minimum number of self-intersections, counted with multiplicity, over all its immersions in the plane. We show that the tropical crossing number is at most quadratic in the number of edges and this bound is sharp. For curves of genus up to two, we systematically compute the crossing number. Finally, we use our immersed tropical curves to construct totally faithful nodal algebraic curves via lifting results of Mikhalkin and Shustin.Comment: 23 pages, 14 figures, final submitted versio

    Improved Bounds for Drawing Trees on Fixed Points with L-shaped Edges

    Full text link
    Let TT be an nn-node tree of maximum degree 4, and let PP be a set of nn points in the plane with no two points on the same horizontal or vertical line. It is an open question whether TT always has a planar drawing on PP such that each edge is drawn as an orthogonal path with one bend (an "L-shaped" edge). By giving new methods for drawing trees, we improve the bounds on the size of the point set PP for which such drawings are possible to: O(n1.55)O(n^{1.55}) for maximum degree 4 trees; O(n1.22)O(n^{1.22}) for maximum degree 3 (binary) trees; and O(n1.142)O(n^{1.142}) for perfect binary trees. Drawing ordered trees with L-shaped edges is harder---we give an example that cannot be done and a bound of O(nlogn)O(n \log n) points for L-shaped drawings of ordered caterpillars, which contrasts with the known linear bound for unordered caterpillars.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Planar projections of graphs

    Full text link
    We introduce and study a new graph representation where vertices are embedded in three or more dimensions, and in which the edges are drawn on the projections onto the axis-parallel planes. We show that the complete graph on nn vertices has a representation in n/2+1\lceil \sqrt{n/2}+1 \rceil planes. In 3 dimensions, we show that there exist graphs with 6n156n-15 edges that can be projected onto two orthogonal planes, and that this is best possible. Finally, we obtain bounds in terms of parameters such as geometric thickness and linear arboricity. Using such a bound, we show that every graph of maximum degree 5 has a plane-projectable representation in 3 dimensions.Comment: Accepted at CALDAM 202

    Advancements on SEFE and Partitioned Book Embedding Problems

    Full text link
    In this work we investigate the complexity of some problems related to the {\em Simultaneous Embedding with Fixed Edges} (SEFE) of kk planar graphs and the PARTITIONED kk-PAGE BOOK EMBEDDING (PBE-kk) problems, which are known to be equivalent under certain conditions. While the computational complexity of SEFE for k=2k=2 is still a central open question in Graph Drawing, the problem is NP-complete for k3k \geq 3 [Gassner {\em et al.}, WG '06], even if the intersection graph is the same for each pair of graphs ({\em sunflower intersection}) [Schaefer, JGAA (2013)]. We improve on these results by proving that SEFE with k3k \geq 3 and sunflower intersection is NP-complete even when the intersection graph is a tree and all the input graphs are biconnected. Also, we prove NP-completeness for k3k \geq 3 of problem PBE-kk and of problem PARTITIONED T-COHERENT kk-PAGE BOOK EMBEDDING (PTBE-kk) - that is the generalization of PBE-kk in which the ordering of the vertices on the spine is constrained by a tree TT - even when two input graphs are biconnected. Further, we provide a linear-time algorithm for PTBE-kk when k1k-1 pages are assigned a connected graph. Finally, we prove that the problem of maximizing the number of edges that are drawn the same in a SEFE of two graphs is NP-complete in several restricted settings ({\em optimization version of SEFE}, Open Problem 99, Chapter 1111 of the Handbook of Graph Drawing and Visualization).Comment: 29 pages, 10 figures, extended version of 'On Some NP-complete SEFE Problems' (Eighth International Workshop on Algorithms and Computation, 2014

    Mixed Volume and Distance Geometry Techniques for Counting Euclidean Embeddings of Rigid Graphs

    Get PDF
    A graph G is called generically minimally rigid in Rd if, for any choice of sufficiently generic edge lengths, it can be embedded in Rd in a finite number of distinct ways, modulo rigid transformations. Here, we deal with the problem of determining tight bounds on the number of such embeddings, as a function of the number of vertices. The study of rigid graphs is motivated by numerous applications, mostly in robotics, bioinformatics, sensor networks and architecture. We capture embeddability by polynomial systems with suitable structure, so that their mixed volume, which bounds the number of common roots, yields interesting upper bounds on the number of embeddings. We explore different polynomial formulations so as to reduce the corresponding mixed volume, namely by introducing new variables that remove certain spurious roots, and by applying the theory of distance geometry. We focus on R2 and R3, where Laman graphs and 1-skeleta (or edge graphs) of convex simplicial polyhedra, respectively, admit inductive Henneberg constructions. Our implementation yields upper bounds for n ≤ 10 in R2 and R3, which reduce the existing gaps and lead to tight bounds for n ≤ 7 in both R2 and R3; in particular, we describe the recent settlement of the case of Laman graphs with 7 vertices. Our approach also yields a new upper bound for Laman graphs with 8 vertices, which is conjectured to be tight. We also establish the first lower bound in R3 of about 2.52n, where n denotes the number of vertices
    corecore