2,842 research outputs found

    Attitude and Gyro Bias Estimation Using GPS and IMU Measurements

    Full text link
    We propose an attitude and gyro-bias estimation scheme for accelerated rigid body systems using an inertial measurement unit (IMU) and a global positioning system (GPS). The proposed scheme allows to obtain attitude estimates directly on the Special Orthogonal group SO(3)SO(3) while estimating the gyro bias and the unknown apparent acceleration of the vehicle. We prove semi-global exponential stability of the estimation errors. Furthermore, a new switching technique for the attitude state is introduced which results in a velocity-aided hybrid attitude observer with proven global exponential stability

    Nonlinear signal-correction observer and application to UAV navigation

    Get PDF
    A nonlinear signal-correction observer (NSCO) is presented for signals correction and estimation, which not only can reject the position measurement error, but also the unknown velocity can be estimated, in spite of the existence of large position measurement error and intense stochastic non-Gaussian noise. For this method, the position signal is not required to be bounded. The NSCO is developed for position/acceleration integration, and it is applied to an unmanned aerial vehicle (UAV) navigation: Based on the NSCO, the position and flying velocity of quadrotor UAV are estimated. An experiment is conducted to demonstrate the effectiveness of the proposed method

    On sensor fusion for airborne wind energy systems

    Full text link
    A study on filtering aspects of airborne wind energy generators is presented. This class of renewable energy systems aims to convert the aerodynamic forces generated by tethered wings, flying in closed paths transverse to the wind flow, into electricity. The accurate reconstruction of the wing's position, velocity and heading is of fundamental importance for the automatic control of these kinds of systems. The difficulty of the estimation problem arises from the nonlinear dynamics, wide speed range, large accelerations and fast changes of direction that the wing experiences during operation. It is shown that the overall nonlinear system has a specific structure allowing its partitioning into sub-systems, hence leading to a series of simpler filtering problems. Different sensor setups are then considered, and the related sensor fusion algorithms are presented. The results of experimental tests carried out with a small-scale prototype and wings of different sizes are discussed. The designed filtering algorithms rely purely on kinematic laws, hence they are independent from features like wing area, aerodynamic efficiency, mass, etc. Therefore, the presented results are representative also of systems with larger size and different wing design, different number of tethers and/or rigid wings.Comment: This manuscript is a preprint of a paper accepted for publication on the IEEE Transactions on Control Systems Technology and is subject to IEEE Copyright. The copy of record is available at IEEEXplore library: http://ieeexplore.ieee.org

    Accelerometers on Quadrotors : What do they Really Measure?

    No full text
    International audienceA revisited quadrotor model is proposed, including the so-called rotor drag. It differs from the model usually considered, even at first order, and much better explains the role of accelerometer feedback in control algorithms. The theoretical derivation is supported by experimental data

    Contact-Aided Invariant Extended Kalman Filtering for Legged Robot State Estimation

    Full text link
    This paper derives a contact-aided inertial navigation observer for a 3D bipedal robot using the theory of invariant observer design. Aided inertial navigation is fundamentally a nonlinear observer design problem; thus, current solutions are based on approximations of the system dynamics, such as an Extended Kalman Filter (EKF), which uses a system's Jacobian linearization along the current best estimate of its trajectory. On the basis of the theory of invariant observer design by Barrau and Bonnabel, and in particular, the Invariant EKF (InEKF), we show that the error dynamics of the point contact-inertial system follows a log-linear autonomous differential equation; hence, the observable state variables can be rendered convergent with a domain of attraction that is independent of the system's trajectory. Due to the log-linear form of the error dynamics, it is not necessary to perform a nonlinear observability analysis to show that when using an Inertial Measurement Unit (IMU) and contact sensors, the absolute position of the robot and a rotation about the gravity vector (yaw) are unobservable. We further augment the state of the developed InEKF with IMU biases, as the online estimation of these parameters has a crucial impact on system performance. We evaluate the convergence of the proposed system with the commonly used quaternion-based EKF observer using a Monte-Carlo simulation. In addition, our experimental evaluation using a Cassie-series bipedal robot shows that the contact-aided InEKF provides better performance in comparison with the quaternion-based EKF as a result of exploiting symmetries present in the system dynamics.Comment: Published in the proceedings of Robotics: Science and Systems 201
    corecore