2 research outputs found

    Recent Techniques for Regularization in Partial Differential Equations and Imaging

    Get PDF
    abstract: Inverse problems model real world phenomena from data, where the data are often noisy and models contain errors. This leads to instabilities, multiple solution vectors and thus ill-posedness. To solve ill-posed inverse problems, regularization is typically used as a penalty function to induce stability and allow for the incorporation of a priori information about the desired solution. In this thesis, high order regularization techniques are developed for image and function reconstruction from noisy or misleading data. Specifically the incorporation of the Polynomial Annihilation operator allows for the accurate exploitation of the sparse representation of each function in the edge domain. This dissertation tackles three main problems through the development of novel reconstruction techniques: (i) reconstructing one and two dimensional functions from multiple measurement vectors using variance based joint sparsity when a subset of the measurements contain false and/or misleading information, (ii) approximating discontinuous solutions to hyperbolic partial differential equations by enhancing typical solvers with l1 regularization, and (iii) reducing model assumptions in synthetic aperture radar image formation, specifically for the purpose of speckle reduction and phase error correction. While the common thread tying these problems together is the use of high order regularization, the defining characteristics of each of these problems create unique challenges. Fast and robust numerical algorithms are also developed so that these problems can be solved efficiently without requiring fine tuning of parameters. Indeed, the numerical experiments presented in this dissertation strongly suggest that the new methodology provides more accurate and robust solutions to a variety of ill-posed inverse problems.Dissertation/ThesisDoctoral Dissertation Mathematics 201

    A nonconvex model to remove multiplicative noise

    No full text
    International audienceThis paper deals with the denoising of SAR images. We draw our inspiration from the modeling of multiplicative speckle noise. By using a MAP estimator, we propose a functional whose minimizer corresponds to the denoised image we want to recover. Although the functional is not convex, we prove the existence of a minimizer. Then we study a semi-discrete version of the associated evolution problem, for which we derive existence and uniqueness results for the solution. We prove the convergence of this semi-discrete scheme. We conclude with some numerical results
    corecore