7 research outputs found

    A Multistage Method for SCMA Codebook Design Based on MDS Codes

    Get PDF
    Sparse Code Multiple Access (SCMA) has been recently proposed for the future generation of wireless communication standards. SCMA system design involves specifying several parameters. In order to simplify the procedure, most works consider a multistage design approach. Two main stages are usually emphasized in these methods: sparse signatures design (equivalently, resource allocation) and codebook design. In this paper, we present a novel SCMA codebook design method. The proposed method considers SCMA codebooks structured with an underlying vector space obtained from classical block codes. In particular, when using maximum distance separable (MDS) codes, our proposed design provides maximum signal-space diversity with a relatively small alphabet. The use of small alphabets also helps to maintain desired properties in the codebooks, such as low peak-to-average power ratio and low-complexity detection.Comment: Submitted to IEEE Wireless Communication Letter

    Sub-graph based joint sparse graph for sparse code multiple access systems

    Get PDF
    Sparse code multiple access (SCMA) is a promising air interface candidate technique for next generation mobile networks, especially for massive machine type communications (mMTC). In this paper, we design a LDPC coded SCMA detector by combining the sparse graphs of LDPC and SCMA into one joint sparse graph (JSG). In our proposed scheme, SCMA sparse graph (SSG) defined by small size indicator matrix is utilized to construct the JSG, which is termed as sub-graph based joint sparse graph of SCMA (SG-JSG-SCMA). In this paper, we first study the binary-LDPC (B-LDPC) coded SGJSG- SCMA system. To combine the SCMA variable node (SVN) and LDPC variable node (LVN) into one joint variable node (JVN), a non-binary LDPC (NB-LDPC) coded SG-JSG-SCMA is also proposed. Furthermore, to reduce the complexity of NBLDPC coded SG-JSG-SCMA, a joint trellis representation (JTR) is introduced to represent the search space of NB-LDPC coded SG-JSG-SCMA. Based on JTR, a low complexity joint trellis based detection and decoding (JTDD) algorithm is proposed to reduce the computational complexity of NB-LDPC coded SGJSG- SCMA system. According to the simulation results, SG-JSGSCMA brings significant performance improvement compare to the conventional receiver using the disjoint approach, and it can also outperform a Turbo-structured receiver with comparable complexity. Moreover, the joint approach also has advantages in terms of processing latency compare to the Turbo approaches

    Doubly-Irregular Repeat-Accumulate Codes over Integer Rings for Multi-user Communications

    Full text link
    Structured codes based on lattices were shown to provide enlarged capacity for multi-user communication networks. In this paper, we study capacity-approaching irregular repeat accumulate (IRA) codes over integer rings Z2m\mathbb{Z}_{2^{m}} for 2m2^m-PAM signaling, m=1,2,⋯m=1,2,\cdots. Such codes feature the property that the integer sum of KK codewords belongs to the extended codebook (or lattice) w.r.t. the base code. With it, \emph{% structured binning} can be utilized and the gains promised in lattice based network information theory can be materialized in practice. In designing IRA ring codes, we first analyze the effect of zero-divisors of integer ring on the iterative belief-propagation (BP) decoding, and show the invalidity of symmetric Gaussian approximation. Then we propose a doubly IRA (D-IRA) ring code structure, consisting of \emph{irregular multiplier distribution} and \emph{irregular node-degree distribution}, that can restore the symmetry and optimize the BP decoding threshold. For point-to-point AWGN channel with % 2^m -PAM inputs, D-IRA ring codes perform as low as 0.29 dB to the capacity limits, outperforming existing bit-interleaved coded-modulation (BICM) and IRA modulation codes over GF(2m2^m). We then proceed to design D-IRA ring codes for two important multi-user communication setups, namely compute-forward (CF) and dirty paper coding (DPC), with 2m2^m-PAM signaling. With it, a physical-layer network coding scheme yields a gap to the CF limit by 0.24 dB, and a simple linear DPC scheme exhibits a gap to the capacity by 0.91 dB.Comment: 30 pages, 13 figures, submitted to IEEE Trans. Signal Processin

    A Tutorial on Decoding Techniques of Sparse Code Multiple Access

    Get PDF
    Sparse Code Multiple Access (SCMA) is a disruptive code-domain non-orthogonal multiple access (NOMA) scheme to enable future massive machine-type communication networks. As an evolved variant of code division multiple access (CDMA), multiple users in SCMA are separated by assigning distinctive sparse codebooks (CBs). Efficient multiuser detection is carried out at the receiver by employing the message passing algorithm (MPA) that exploits the sparsity of CBs to achieve error performance approaching to that of the maximum likelihood receiver. In spite of numerous research efforts in recent years, a comprehensive one-stop tutorial of SCMA covering the background, the basic principles, and new advances, is still missing, to the best of our knowledge. To fill this gap and to stimulate more forthcoming research, we provide a holistic introduction to the principles of SCMA encoding, CB design, and MPA based decoding in a self-contained manner. As an ambitious paper aiming to push the limits of SCMA, we present a survey of advanced decoding techniques with brief algorithmic descriptions as well as several promising directions
    corecore