8 research outputs found

    A Theoretical Analysis of Contrastive Unsupervised Representation Learning

    Full text link
    Recent empirical works have successfully used unlabeled data to learn feature representations that are broadly useful in downstream classification tasks. Several of these methods are reminiscent of the well-known word2vec embedding algorithm: leveraging availability of pairs of semantically "similar" data points and "negative samples," the learner forces the inner product of representations of similar pairs with each other to be higher on average than with negative samples. The current paper uses the term contrastive learning for such algorithms and presents a theoretical framework for analyzing them by introducing latent classes and hypothesizing that semantically similar points are sampled from the same latent class. This framework allows us to show provable guarantees on the performance of the learned representations on the average classification task that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled experiments in both the text and image domains to support the theory.Comment: 19 pages, 5 figure

    A non-generative framework and convex relaxations for unsupervised learning

    No full text
    We give a novel formal theoretical framework for unsupervised learning with two distinctive characteristics. First, it does not assume any generative model and based on a worst-case performance metric. Second, it is comparative, namely performance is measured with respect to a given hypothesis class. This allows to avoid known computational hardness results and improper algorithms based on convex relaxations. We show how several families of unsupervised learning models, which were previously only analyzed under probabilistic assumptions and are otherwise provably intractable, can be efficiently learned in our framework by convex optimizatio
    corecore