17 research outputs found

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Implementation of Virtual Reality Motivated Physical Activity via Omnidirectional Treadmill in a Supported Living Facility for Older Adults: A Mixed-Methods Evaluation.: Virtual reality to motivate physical activity for older adults

    Get PDF
    Virtual reality (VR) can support healthy ageing, but few devices have been trialed with frail older adults to increase physical activity. We conducted a preliminary mixed-methods implementation evaluation of an omnidirectional VR treadmill and a static VR experience with seven older adults over a six-week period in a supported living facility. Frequency of use and pre-post physical functioning measures were collected, mainly to establish technology suitability based on person characteristics. Diary entries following technology use, resident focus group and staff interview revealed technology acceptance and perceived potential for increasing physical activity, health and wellbeing through accessing virtual environments, which motivated continued activity. Results demonstrated technology suitability for a range of older adults with various mobility and physical impairments. However, residents noted interest in a seated treadmill for physical activity without perceived risks of falls with standing treadmills. Staff raised considerations around care home implementations including usability, cost and space

    Implementation of Virtual Reality Motivated Physical Activity via Omnidirectional Treadmill in a Supported Living Facility for Older Adults: A Mixed-Methods Evaluation.: Virtual reality to motivate physical activity for older adults

    Get PDF
    Virtual reality (VR) can support healthy ageing, but few devices have been trialed with frail older adults to increase physical activity. We conducted a preliminary mixed-methods implementation evaluation of an omnidirectional VR treadmill and a static VR experience with seven older adults over a six-week period in a supported living facility. Frequency of use and pre-post physical functioning measures were collected, mainly to establish technology suitability based on person characteristics. Diary entries following technology use, resident focus group and staff interview revealed technology acceptance and perceived potential for increasing physical activity, health and wellbeing through accessing virtual environments, which motivated continued activity. Results demonstrated technology suitability for a range of older adults with various mobility and physical impairments. However, residents noted interest in a seated treadmill for physical activity without perceived risks of falls with standing treadmills. Staff raised considerations around care home implementations including usability, cost and space

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices

    Haptic Interfaces for Virtual Reality: Challenges and Research Directions

    Get PDF
    The sense of touch (haptics) has been applied in several areas such as tele-haptics, telemedicine, training, education, and entertainment. As of today, haptics is used and explored by researchers in many more multi-disciplinary and inter-disciplinary areas. The utilization of haptics is also enhanced with other forms of media such as audio, video, and even sense of smell. For example, the use of haptics is prevalent in virtual reality environments to increase the immersive experience for users. However, while there has been significant progress within haptic interfaces throughout the years, there are still many challenges that limit their development. This review highlights haptic interfaces for virtual reality ranging from wearables, handhelds, encountered-type devices, and props, to mid-air approaches. We discuss and summarize these approaches, along with interaction domains such as skin receptors, object properties, and force. This is in order to arrive at design challenges for each interface, along with existing research gaps
    corecore