17,657 research outputs found

    Fast trajectory search for real-world applications

    Get PDF
    With the popularity of smartphones equipped with GPS, a vast amount of trajectory data are being produced from location-based services, such as Uber, Google Maps, and Foursquare. We broadly divide trajectory data into three types: 1) commuter trajectories from taxicabs and ride-sharing apps; 2) vehicle trajectories from GPS navigation apps; 3) activity trajectories from social network check-ins and travel blogs. We investigate efficient and effective search on each of the three types of trajectory data, each of which has a real-world application. In particular: 1) commuter trajectory search can serve for the transport capacity estimation and route planning; 2) vehicle trajectory search can help real-time traffic monitoring and trend analysis; 3) activity trajectory search can be used in interactive and personalized trip planning. As the most straightforward trajectory data, a commuter trajectory only contains two points: origin and destination indicating a passenger’s movement, which is valuable for transportation decision making. In this thesis, we propose a novel query RkNNT to estimate the capacity of a bus route in the transport network. Answering RkNNT is challenging due to the high amount of data from commuters. We propose efficient solutions to prune most trajectories which cannot choose a query route as their nearest one. Further, we apply RkNNT to the optimal route planning problem-MaxRkNNT. A vehicle trajectory has more points than a commuter trajectory, as it tracks the whole trace of a vehicle and can further advocate the application of traffic monitoring. We conclude the common queries over trajectory data for monitoring purposes and proposes a search engine Torch to manage and search trajectories with map matching over a road network, instead of storing raw data sampled from GPS with a high cost. Besides improving the efficiency of search, Torch also supports compression, effectiveness evaluation of various existing similarity measures, and large-scale clustering k-paths with a novel similarity measure LORS. Exploring the activity trajectory data which contains textual information can help plan personalized trips for tourists. Based on spatial indexes which we propose for commuter and vehicle trajectory data, we further develop a unified search paradigm to process various top-k queries over activity trajectory and POIs data (hotels, restaurants, and attractions, etc.) at the same time. In particular, a new point-wise similarity measure PATS and an indexing framework with a unified search paradigm are proposed

    Computing Similarity between a Pair of Trajectories

    Full text link
    With recent advances in sensing and tracking technology, trajectory data is becoming increasingly pervasive and analysis of trajectory data is becoming exceedingly important. A fundamental problem in analyzing trajectory data is that of identifying common patterns between pairs or among groups of trajectories. In this paper, we consider the problem of identifying similar portions between a pair of trajectories, each observed as a sequence of points sampled from it. We present new measures of trajectory similarity --- both local and global --- between a pair of trajectories to distinguish between similar and dissimilar portions. Our model is robust under noise and outliers, it does not make any assumptions on the sampling rates on either trajectory, and it works even if they are partially observed. Additionally, the model also yields a scalar similarity score which can be used to rank multiple pairs of trajectories according to similarity, e.g. in clustering applications. We also present efficient algorithms for computing the similarity under our measures; the worst-case running time is quadratic in the number of sample points. Finally, we present an extensive experimental study evaluating the effectiveness of our approach on real datasets, comparing with it with earlier approaches, and illustrating many issues that arise in trajectory data. Our experiments show that our approach is highly accurate in distinguishing similar and dissimilar portions as compared to earlier methods even with sparse sampling

    Context Trees: Augmenting Geospatial Trajectories with Context

    Get PDF
    Exposing latent knowledge in geospatial trajectories has the potential to provide a better understanding of the movements of individuals and groups. Motivated by such a desire, this work presents the context tree, a new hierarchical data structure that summarises the context behind user actions in a single model. We propose a method for context tree construction that augments geospatial trajectories with land usage data to identify such contexts. Through evaluation of the construction method and analysis of the properties of generated context trees, we demonstrate the foundation for understanding and modelling behaviour afforded. Summarising user contexts into a single data structure gives easy access to information that would otherwise remain latent, providing the basis for better understanding and predicting the actions and behaviours of individuals and groups. Finally, we also present a method for pruning context trees, for use in applications where it is desirable to reduce the size of the tree while retaining useful information

    A survey on Human Mobility and its applications

    Full text link
    Human Mobility has attracted attentions from different fields of studies such as epidemic modeling, traffic engineering, traffic prediction and urban planning. In this survey we review major characteristics of human mobility studies including from trajectory-based studies to studies using graph and network theory. In trajectory-based studies statistical measures such as jump length distribution and radius of gyration are analyzed in order to investigate how people move in their daily life, and if it is possible to model this individual movements and make prediction based on them. Using graph in mobility studies, helps to investigate the dynamic behavior of the system, such as diffusion and flow in the network and makes it easier to estimate how much one part of the network influences another by using metrics like centrality measures. We aim to study population flow in transportation networks using mobility data to derive models and patterns, and to develop new applications in predicting phenomena such as congestion. Human Mobility studies with the new generation of mobility data provided by cellular phone networks, arise new challenges such as data storing, data representation, data analysis and computation complexity. A comparative review of different data types used in current tools and applications of Human Mobility studies leads us to new approaches for dealing with mentioned challenges
    • …
    corecore