612 research outputs found

    Monte Carlo evaluation of sensitivities in computational finance

    Get PDF
    In computational finance, Monte Carlo simulation is used to compute the correct prices for financial options. More important, however, is the ability to compute the so-called "Greeks'', the first and second order derivatives of the prices with respect to input parameters such as the current asset price, interest rate and level of volatility.\ud \ud This paper discusses the three main approaches to computing Greeks: finite difference, likelihood ratio method (LRM) and pathwise sensitivity calculation. The last of these has an adjoint implementation with a computational cost which is independent of the number of first derivatives to be calculated. We explain how the practical development of adjoint codes is greatly assisted by using Algorithmic Differentiation, and in particular discuss the performance achieved by the FADBAD++ software package which is based on templates and operator overloading within C++.\ud \ud The pathwise approach is not applicable when the financial payoff function is not differentiable, and even when the payoff is differentiable, the use of scripting in real-world implementations means it can be very difficult in practice to evaluate the derivative of very complex financial products. A new idea is presented to address these limitations by combining the adjoint pathwise approach for the stochastic path evolution with LRM for the payoff evaluation

    Multilevel Monte Carlo methods for applications in finance

    Full text link
    Since Giles introduced the multilevel Monte Carlo path simulation method [18], there has been rapid development of the technique for a variety of applications in computational finance. This paper surveys the progress so far, highlights the key features in achieving a high rate of multilevel variance convergence, and suggests directions for future research.Comment: arXiv admin note: text overlap with arXiv:1202.6283; and with arXiv:1106.4730 by other author

    Computing Greeks by Finite Difference using Monte Carlo Simulation and Variance Reduction Techniques

    Get PDF
    Makalah ini membahas penggunaan metode Monte Carlo untuk komputasi Greeks. Algoritma metode beda hingga untuk memperkirakan Greeks menggunakan teknik simulasi Monte Carlo dan teknik reduksi varians (yaitu nomor acak umum dan varians antitetis) disajikan. Model Black-Scholes digunakan sebagai model acuan untuk menganalisa dan menguji metode numerik. Hal ini menunjukkan bahwa jumlah simulasi mempengaruhi kinerja yang paling banyak, dan ada beberapa teknik untuk mengurangi kesalahan. Dalam kasus options dengan payoff diskontinu, metode ini tidak berjalan dengan baik saat waktu sekarang mendekati waktu jatuh tempo.Kata kunci: Options, Greeks, Metode Monte Carlo, Metode Beda Hingga, dan Model Black-Schole

    Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without L\'{e}vy area simulation

    Full text link
    In this paper we introduce a new multilevel Monte Carlo (MLMC) estimator for multi-dimensional SDEs driven by Brownian motions. Giles has previously shown that if we combine a numerical approximation with strong order of convergence O(Δt)O(\Delta t) with MLMC we can reduce the computational complexity to estimate expected values of functionals of SDE solutions with a root-mean-square error of ϵ\epsilon from O(ϵ−3)O(\epsilon^{-3}) to O(ϵ−2)O(\epsilon^{-2}). However, in general, to obtain a rate of strong convergence higher than O(Δt1/2)O(\Delta t^{1/2}) requires simulation, or approximation, of L\'{e}vy areas. In this paper, through the construction of a suitable antithetic multilevel correction estimator, we are able to avoid the simulation of L\'{e}vy areas and still achieve an O(Δt2)O(\Delta t^2) multilevel correction variance for smooth payoffs, and almost an O(Δt3/2)O(\Delta t^{3/2}) variance for piecewise smooth payoffs, even though there is only O(Δt1/2)O(\Delta t^{1/2}) strong convergence. This results in an O(ϵ−2)O(\epsilon^{-2}) complexity for estimating the value of European and Asian put and call options.Comment: Published in at http://dx.doi.org/10.1214/13-AAP957 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multilevel Monte Carlo methods

    Full text link
    The author's presentation of multilevel Monte Carlo path simulation at the MCQMC 2006 conference stimulated a lot of research into multilevel Monte Carlo methods. This paper reviews the progress since then, emphasising the simplicity, flexibility and generality of the multilevel Monte Carlo approach. It also offers a few original ideas and suggests areas for future research

    Simulation-based Methods for Stochastic Control and Global Optimization

    Get PDF
    Ideas of stochastic control have found applications in a variety of areas. A subclass of the problems with parameterized policies (including some stochastic impulse control problems) has received significant attention recently because of emerging applications in the areas of engineering, management, and mathematical finance. However, explicit solutions for this type of stochastic control problems only exist for some special cases, and effective numerical methods are relatively rare. Deriving efficient stochastic derivative estimators for payoff functions with discontinuities arising in many problems of practical interest is very challenging. Global optimization problems are extremely hard to solve due to the typical multimodal properties of objective functions. With the increasing availability of computing power and memory, there is a rapid development in the merging of simulation and optimization techniques. Developing new and efficient simulation-based optimization algorithms for solving stochastic control and global optimization problems is the primary goal of this thesis. First we develop a new simulation-based optimization algorithm to solve a stochastic control problem with a parameterized policy that arises in the setting of dynamic pricing and inventory control. We consider a joint dynamic pricing and inventory control problem with continuous stochastic demand and model the problem as a stochastic control problem. An explicit solution is given when a special demand model is considered. For general demand models with a parameterized policy, we develop a new simulation-based method to solve this stochastic control problem. We prove the convergence of the algorithm and show the effectiveness of the algorithm by numerical experiments. In the second part of this thesis, we focus on the problem of estimating the derivatives for a class of discontinuous payoff functions, for which existing methods are either not valid or not efficient. We derive a new unbiased stochastic derivative estimator for performance functions containing indicator functions. One important feature of this new estimator is that it can be computed from a single sample path or simulation, whereas existing estimators in the literature require additional simulations. Finally we propose a new framework for solving global optimization problems by establishing a connection with evolutionary games, and show that a particular equilibrium set of the evolutionary game is asymptotically stable. Based on this connection, we propose a Model-based Evolutionary Optimization (MEO) algorithm, which uses probabilistic models to generate new candidate solutions and uses dynamics from evolutionary game theory to govern the evolution of the probabilistic models. MEO gives new insight into the mechanism of model updating in model-based global optimization algorithms from the perspective of evolutionary game theory. Furthermore, it opens the door to developing new algorithms by using various learning algorithms and analysis techniques from evolutionary game theory
    • …
    corecore