14,577 research outputs found

    Custom-designed motion-based games for older adults: a review of literature in human-computer interaction

    Get PDF
    Many older adults, particularly persons living in senior residences and care homes, lead sedentary lifestyles, which reduces their life expectancy. Motion-based video games encourage physical activity and might be an opportunity for these adults to remain active and engaged; however, research efforts in the field have frequently focused on younger audiences and little is known about the requirements and benefits of motion-based games for elderly players. In this paper, we present an overview of motion-based video games and other interactive technologies for older adults. First, we summarize existing approaches towards the definition of motion-based video games – often referred to as exergames – and suggest a categorization of motion-based applications into active video games, exergames, and augmented sports. Second, we use this scheme to classify case studies addressing design efforts particularly directed towards older adults. Third, we analyze these case studies with a focus on potential target audiences, benefits, challenges in their deployment, and future design opportunities to investigate whether motion-based video games can be applied to encourage physical activity among older adults. In this context, special attention is paid to evaluation routines and their implications regarding the deployment of such games in the daily lives of older adults. The results show that many case studies examine isolated aspects of motion-based game design for older adults, and despite the broad range of issues in motion-based interaction for older adults covered by the sum of all research projects, there appears to be a disconnect between laboratory-based research and the deployment of motion-based video games in the daily lives of senior citizens. Our literature review suggests that despite research results suggesting various benefits of motion-based play for older adults, most work in the field of game design for senior citizens has focused on the implementation of accessible user interfaces, and that little is known about the long-term deployment of video games for this audience, which is a crucial step if these games are to be implemented in activity programs of senior residences, care homes, or in therapy

    Automatic camera selection for activity monitoring in a multi-camera system for tennis

    Get PDF
    In professional tennis training matches, the coach needs to be able to view play from the most appropriate angle in order to monitor players' activities. In this paper, we describe and evaluate a system for automatic camera selection from a network of synchronised cameras within a tennis sporting arena. This work combines synchronised video streams from multiple cameras into a single summary video suitable for critical review by both tennis players and coaches. Using an overhead camera view, our system automatically determines the 2D tennis-court calibration resulting in a mapping that relates a player's position in the overhead camera to their position and size in another camera view in the network. This allows the system to determine the appearance of a player in each of the other cameras and thereby choose the best view for each player via a novel technique. The video summaries are evaluated in end-user studies and shown to provide an efficient means of multi-stream visualisation for tennis player activity monitoring

    Combining inertial and visual sensing for human action recognition in tennis

    Get PDF
    In this paper, we present a framework for both the automatic extraction of the temporal location of tennis strokes within a match and the subsequent classification of these as being either a serve, forehand or backhand. We employ the use of low-cost visual sensing and low-cost inertial sensing to achieve these aims, whereby a single modality can be used or a fusion of both classification strategies can be adopted if both modalities are available within a given capture scenario. This flexibility allows the framework to be applicable to a variety of user scenarios and hardware infrastructures. Our proposed approach is quantitatively evaluated using data captured from elite tennis players. Results point to the extremely accurate performance of the proposed approach irrespective of input modality configuration

    A virtual coaching environment for improving golf swing technique

    Get PDF
    As a proficient golf swing is a key element of success in golf, many golfers make significant effort improving their stroke mechanics. In order to help enhance golfing performance, it is important to identify the performance determining factors within the full golf swing. In addition, explicit instructions on specific features in stroke technique requiring alterations must be imparted to the player in an unambiguous and intuitive manner. However, these two objectives are difficult to achieve due to the subjective nature of traditional coaching techniques and the predominantly implicit knowledge players have of their movements. In this work, we have developed a set of visualisation and analysis tools for use in a virtual golf coaching environment. In this virtual coaching studio, the analysis tools allow for specific areas require improvement in a player's 3D stroke dynamics to be isolated. An interactive 3D virtual coaching environment then allows detailed and unambiguous coaching information to be visually imparted back to the player via the use of two virtual human avatars; the first mimics the movements performed by the player; the second takes the role of a virtual coach, performing ideal stroke movement dynamics. The potential of the coaching tool is highlighted in its use by sports science researchers in the evaluation of competing approaches for calculating the X-Factor, a significant performance determining factor for hitting distance in a golf swing

    TennisSense: a platform for extracting semantic information from multi-camera tennis data

    Get PDF
    In this paper, we introduce TennisSense, a technology platform for the digital capture, analysis and retrieval of tennis training and matches. Our algorithms for extracting useful metadata from the overhead court camera are described and evaluated. We track the tennis ball using motion images for ball candidate detection and then link ball candidates into locally linear tracks. From these tracks we can infer when serves and rallies take place. Using background subtraction and hysteresis-type blob tracking, we track the tennis players positions. The performance of both modules is evaluated using ground-truthed data. The extracted metadata provides valuable information for indexing and efficient browsing of hours of multi-camera tennis footage and we briefly illustrative how this data is used by our tennis-coach playback interface

    An automatic visual analysis system for tennis

    Get PDF
    This article presents a novel video analysis system for coaching tennis players of all levels, which uses computer vision algorithms to automatically edit and index tennis videos into meaningful annotations. Existing tennis coaching software lacks the ability to automatically index a tennis match into key events, and therefore, a coach who uses existing software is burdened with time-consuming manual video editing. This work aims to explore the effectiveness of a system to automatically detect tennis events. A secondary aim of this work is to explore the bene- fits coaches experience in using an event retrieval system to retrieve the automatically indexed events. It was found that automatic event detection can significantly improve the experience of using video feedback as part of an instructional coaching session. In addition to the automatic detection of key tennis events, player and ball movements are automati- cally tracked throughout an entire match and this wealth of data allows users to find interesting patterns in play. Player and ball movement information are integrated with the automatically detected tennis events, and coaches can query the data to retrieve relevant key points during a match or analyse player patterns that need attention. This coaching software system allows coaches to build advanced queries, which cannot be facilitated with existing video coaching solutions, without tedious manual indexing. This article proves that the event detection algorithms in this work can detect the main events in tennis with an average precision and recall of 0.84 and 0.86, respectively, and can typically eliminate man- ual indexing of key tennis events

    Semantic analysis of field sports video using a petri-net of audio-visual concepts

    Get PDF
    The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework
    corecore