3 research outputs found

    Optimal Permutation Routing for Low-dimensional Hypercubes

    Get PDF
    We consider the offline problem of routing a permutation of tokens on the nodes of a d-dimensional hypercube, under a queueless MIMD communication model (under the constraints that each hypercube edge may only communicate one token per communication step, and each node may only be occupied by a single token between communication steps). For a d-dimensional hypercube, it is easy to see that d communication steps are necessary. We develop a theory of “separability ” which enables an analytical proof that d steps suffice for the case d = 3, and facilitates an experimental verification that d steps suffice for d = 4. This result improves the upper bound for the number of communication steps required to route an arbitrary permutation on arbitrarily large hypercubes to 2d − 4. We also find an interesting side-result, that the number of possible communication steps in a d-dimensional hypercube is the same as the number of perfect matchings in a (d + 1)-dimensional hypercube, a combinatorial quantity for which there is no closed-form expression. Finally we present some experimental observations which may lead to a proof of a more general result for arbitrarily large dimension d. 2

    A New Routing Algorithm for Cyclic Shifts on BRGC Hypercubes

    No full text
    [[sponsorship]]資訊科學研究所,資訊科技創新研究中心[[note]]已出版;[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=0020-0190&DestApp=JCR&RQ=IF_CAT_BOXPLO
    corecore