392 research outputs found

    Adaptive Methods for Point Cloud and Mesh Processing

    Get PDF
    Point clouds and 3D meshes are widely used in numerous applications ranging from games to virtual reality to autonomous vehicles. This dissertation proposes several approaches for noise removal and calibration of noisy point cloud data and 3D mesh sharpening methods. Order statistic filters have been proven to be very successful in image processing and other domains as well. Different variations of order statistics filters originally proposed for image processing are extended to point cloud filtering in this dissertation. A brand-new adaptive vector median is proposed in this dissertation for removing noise and outliers from noisy point cloud data. The major contributions of this research lie in four aspects: 1) Four order statistic algorithms are extended, and one adaptive filtering method is proposed for the noisy point cloud with improved results such as preserving significant features. These methods are applied to standard models as well as synthetic models, and real scenes, 2) A hardware acceleration of the proposed method using Microsoft parallel pattern library for filtering point clouds is implemented using multicore processors, 3) A new method for aerial LIDAR data filtering is proposed. The objective is to develop a method to enable automatic extraction of ground points from aerial LIDAR data with minimal human intervention, and 4) A novel method for mesh color sharpening using the discrete Laplace-Beltrami operator is proposed. Median and order statistics-based filters are widely used in signal processing and image processing because they can easily remove outlier noise and preserve important features. This dissertation demonstrates a wide range of results with median filter, vector median filter, fuzzy vector median filter, adaptive mean, adaptive median, and adaptive vector median filter on point cloud data. The experiments show that large-scale noise is removed while preserving important features of the point cloud with reasonable computation time. Quantitative criteria (e.g., complexity, Hausdorff distance, and the root mean squared error (RMSE)), as well as qualitative criteria (e.g., the perceived visual quality of the processed point cloud), are employed to assess the performance of the filters in various cases corrupted by different noisy models. The adaptive vector median is further optimized for denoising or ground filtering aerial LIDAR data point cloud. The adaptive vector median is also accelerated on multi-core CPUs using Microsoft Parallel Patterns Library. In addition, this dissertation presents a new method for mesh color sharpening using the discrete Laplace-Beltrami operator, which is an approximation of second order derivatives on irregular 3D meshes. The one-ring neighborhood is utilized to compute the Laplace-Beltrami operator. The color for each vertex is updated by adding the Laplace-Beltrami operator of the vertex color weighted by a factor to its original value. Different discretizations of the Laplace-Beltrami operator have been proposed for geometrical processing of 3D meshes. This work utilizes several discretizations of the Laplace-Beltrami operator for sharpening 3D mesh colors and compares their performance. Experimental results demonstrated the effectiveness of the proposed algorithms

    FULL-WAVEFORM AND DISCRETE-RETURN LIDAR IN SALT MARSH ENVIRONMENTS: AN ASSESSMENT OF BIOPHYSICAL PARAMETERS, VERTICAL UNCERTATINTY, AND NONPARAMETRIC DEM CORRECTION

    Get PDF
    High-resolution and high-accuracy elevation data sets of coastal salt marsh environments are necessary to support restoration and other management initiatives, such as adaptation to sea level rise. Lidar (light detection and ranging) data may serve this need by enabling efficient acquisition of detailed elevation data from an airborne platform. However, previous research has revealed that lidar data tend to have lower vertical accuracy (i.e., greater uncertainty) in salt marshes than in other environments. The increase in vertical uncertainty in lidar data of salt marshes can be attributed primarily to low, dense-growing salt marsh vegetation. Unfortunately, this increased vertical uncertainty often renders lidar-derived digital elevation models (DEM) ineffective for analysis of topographic features controlling tidal inundation frequency and ecology. This study aims to address these challenges by providing a detailed assessment of the factors influencing lidar-derived elevation uncertainty in marshes. The information gained from this assessment is then used to: 1) test the ability to predict marsh vegetation biophysical parameters from lidar-derived metrics, and 2) develop a method for improving salt marsh DEM accuracy. Discrete-return and full-waveform lidar, along with RTK GNSS (Real-time Kinematic Global Navigation Satellite System) reference data, were acquired for four salt marsh systems characterized by four major taxa (Spartina alterniflora, Spartina patens, Distichlis spicata, and Salicornia spp.) on Cape Cod, Massachusetts. These data were used to: 1) develop an innovative combination of full-waveform lidar and field methods to assess the vertical distribution of aboveground biomass as well as its light blocking properties; 2) investigate lidar elevation bias and standard deviation using varying interpolation and filtering methods; 3) evaluate the effects of seasonality (temporal differences between peak growth and senescent conditions) using lidar data flown in summer and spring; 4) create new products, called Relative Uncertainty Surfaces (RUS), from lidar waveform-derived metrics and determine their utility; and 5) develop and test five nonparametric regression model algorithms (MARS - Multivariate Adaptive Regression, CART - Classification and Regression Trees, TreeNet, Random Forests, and GPSM - Generalized Path Seeker) with 13 predictor variables derived from both discrete and full waveform lidar sources in order to develop a method of improving lidar DEM quality. Results of this study indicate strong correlations for Spartina alterniflora (r \u3e 0.9) between vertical biomass (VB), the distribution of vegetation biomass by height, and vertical obscuration (VO), the measure of the vertical distribution of the ratio of vegetation to airspace. It was determined that simple, feature-based lidar waveform metrics, such as waveform width, can provide new information to estimate salt marsh vegetation biophysical parameters such as vegetation height. The results also clearly illustrate the importance of seasonality, species, and lidar interpolation and filtering methods on elevation uncertainty in salt marshes. Relative uncertainty surfaces generated from lidar waveform features were determined useful in qualitative/visual assessment of lidar elevation uncertainty and correlate well with vegetation height and presence of Spartina alterniflora. Finally, DEMs generated using full-waveform predictor models produced corrections (compared to ground based RTK GNSS elevations) with R2 values of up to 0.98 and slopes within 4% of a perfect 1:1 correlation. The findings from this research have strong potential to advance tidal marsh mapping, research and management initiatives

    Insights into Rockfall from Constant 4D Monitoring

    Get PDF
    Current understanding of the nature of rockfall and their controls stems from the capabilities of slope monitoring. These capabilities are fundamentally limited by the frequency and resolution of data that can be captured. Various assumptions have therefore arisen, including that the mechanisms that underlie rockfall are instantaneous. Clustering of rockfall across rock faces and sequencing through time have been observed, sometimes with an increase in pre-failure deformation and pre-failure rockfall activity prior to catastrophic failure. An inherent uncertainty, however, lies in whether the behaviour of rockfall monitored over much shorter time intervals (Tint) is consistent with that previously monitored at monthly intervals, including observed failure mechanisms, their response to external drivers, and pre-failure deformation. To address the limitations of previous studies on this topic, 8 987 terrestrial laser scans have been acquired over 10 months from continuous near-real time monitoring of an actively failing coastal rock slope (Tint = 0.5 h). A workflow has been devised that automatically resolves depth changes at the surface to 0.03 m. This workflow filters points with high positional uncertainty and detects change in 3D, with both approaches tailored to natural rock faces, which commonly feature sharp edges and partially occluded areas. Analysis of the resulting rockfall inventory, which includes > 180 000 detachments, shows that the proportion of rockfall < 0.1 m3 increases with more frequent surveys for Tint < ca. 100 h, but this trend does not continue for surface comparison over longer time intervals. Therefore, and advantageously, less frequent surveys will derive the same rockfall magnitude-frequency distribution if captured at ca. 100 h intervals as compared to one month or even longer intervals. The shape and size of detachments shows that they are more shallow and smaller than observable rock mass structure, but appear to be limited in size and extent by jointing. Previously explored relationships between rockfall timing and environmental and marine conditions do not appear to apply to this inventory, however, significant relationships between rockfall and rainfall, temperature gradient and tides are demonstrated over short timescales. Pre-failure deformation and rockfall activity is observed in the footprint of incipient rockfall. Rockfall activity occurs predominantly within the same ca. 100 h timescale observed in the size-distribution analysis, and accelerated deformation is common for the largest rockfall during the final 2 h before block detachment. This study provides insights into the nature and development of rockfall during the period prior to detachment, and the controls upon it. This holds considerable implications for our understanding of rockfall and the improvement of future rockfall monitoring

    Structure From Motion Methodology Captures Seasonal Influences on Coastal Bluff Erosion and Landslide Hazards in Casco Bay, ME

    Get PDF
    Shoreline erosion in response to rising sea level is a global problem. Recognizing the need for observational data on coastal bluff recession in Casco Bay, Maine, we employed Structure from Motion (SfM) photogrammetric methods in a dynamic intertidal environment. Evaluating the method as a means to measure and monitor dynamic geomorphological changes occurring at a coastal bluff shows that a spatial resolution of centimeters over an area of 10’s to 100’s of meters can be attained at relatively low cost. The efficient methodology allows for frequent surveys at an operational scale, leading to greater temporal resolution and quantification of bluff erosion activity that supports understanding of the local geohazard. With the greater temporal resolution gained from this evaluation additional inferences are made towards seasonal controls on bluff geomorphology. In the local temperate climate, the dominant erosional actor is characteristically linked to seasonal transitions. Given the urgency of coastal erosion, the lack of local records, and newfound feasibility of repeat surveys, Structure from Motion presents the opportunity to address the uncertainty of bluff instability with an approach that accounts for quantified change over time. Observations were evaluated with respect to: 1) the coastal bluff erosion cycle conceptual model; 2) local landslide hazards; and 3) preservation of a shoreline status record

    Multivariate data assimilation in snow modelling at Alpine sites

    Get PDF
    The knowledge of snowpack dynamics is of critical importance to several real-time applications such as agricultural production, water resource management, flood prevention, hydropower generation, especially in mountain basins. Snowpack state can be estimated by models or from observations, even though both these sources of information are affected by several errors

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application

    Advanced satellite radar interferometry for small-scale surface deformation detection

    Get PDF
    Synthetic aperture radar interferometry (InSAR) is a technique that enables generation of Digital Elevation Models (DEMs) and detection of surface motion at the centimetre level using radar signals transmitted from a satellite or an aeroplane. Deformation observations can be performed due to the fact that surface motion, caused by natural and human activities, generates a local phase shift in the resultant interferogram. The magnitude of surface deformation can be estimated directly as a fraction of the wavelength of the transmitted signal. Moreover, differential InSAR (DInSAR) eliminates the phase signal caused by relief to yield a differential interferogram in which the signature of surface deformation can be seen. Although InSAR applications are well established, the improvement of the interferometry technique and the quality of its products is highly desirable to further enhance its capabilities. The application of InSAR encounters problems due to noise in the interferometric phase measurement, caused by a number of decorrelation factors. In addition, the interferogram contains biases owing to satellite orbit errors and atmospheric heterogeneity These factors dramatically reduce the stlectiveness of radar interferometry in many applications, and, in particular, compromise detection and analysis of small-scale spatial deformations. The research presented in this thesis aim to apply radar interferometry processing to detect small-scale surface deformations, improve the quality of the interferometry products, determine the minimum and maximum detectable deformation gradient and enhance the analysis of the interferometric phase image. The quality of DEM and displacement maps can be improved by various methods at different processing levels. One of the methods is filtering of the interferometric phase.However, while filtering reduces noise in the interferogram, it does not necessarily enhance or recover the signal. Furthermore, the impact of the filter can significantly change the structure of the interferogram. A new adaptive radar interferogram filter has been developed and is presented herein. The filter is based on a modification to the Goldstein radar interferogram filter making the filter parameter dependent on coherence so that incoherent areas are filtered more than coherent areas. This modification minimises the loss of signal while still reducing the level of noise. A methodology leading to the creation of a functional model for determining minimum and maximum detectable deformation gradient, in terms of the coherence value, has been developed. The sets of representative deformation models have been simulated and the associated phase from these models has been introduced to real SAR data acquired by ERS-1/2 satellites. A number of cases of surface motion with varying magnitudes and spatial extent have been simulated. In each case, the resultant surface deformation has been compared with the 'true' surface deformation as defined by the deformation model. Based on those observations, the functional model has been developed. Finally, the extended analysis of the interferometric phase image using a wavelet approach is presented. The ability of a continuous wavelet transform to reveal the content of the wrapped phase interferogram, such as (i) discontinuities, (ii) extent of the deformation signal, and (iii) the magnitude of the deformation signal is examined. The results presented represent a preliminary study revealing the wavelet method as a promising technique for interferometric phase image analysis
    • 

    corecore