7,605 research outputs found

    A New Pruning Method for Solving Decision Trees and Game Trees

    Get PDF
    The main goal of this paper is to describe a newpruning method for solving decision trees and game trees. The pruning method for decision trees suggests a slight variant of decision trees that we call scenario trees. In scenario trees, we do not need a conditional probability for each edge emanating from a chance node. Instead, we require a joint probability for each path from the root node to a leaf node. We compare the pruning method to the traditional rollback method for decision trees and game trees. For problems that require Bayesian revision of probabilities, a scenario tree representation with the pruning method is more efficient than a decision tree representation with the rollback method. For game trees, the pruning method is more efficient than the rollback method

    MAA*: A Heuristic Search Algorithm for Solving Decentralized POMDPs

    Full text link
    We present multi-agent A* (MAA*), the first complete and optimal heuristic search algorithm for solving decentralized partially-observable Markov decision problems (DEC-POMDPs) with finite horizon. The algorithm is suitable for computing optimal plans for a cooperative group of agents that operate in a stochastic environment such as multirobot coordination, network traffic control, `or distributed resource allocation. Solving such problems efiectively is a major challenge in the area of planning under uncertainty. Our solution is based on a synthesis of classical heuristic search and decentralized control theory. Experimental results show that MAA* has significant advantages. We introduce an anytime variant of MAA* and conclude with a discussion of promising extensions such as an approach to solving infinite horizon problems.Comment: Appears in Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence (UAI2005

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Decision Trees And Quality Control Decisions

    Get PDF
    Bayesian decision tree analysis has been widely used as a basis for quality control decision making.  Recently, the traditional decision tree analysis has been criticized for requiring a lot of calculations and, therefore, being inefficient.  This paper presents a simplified and efficient decision tree analysis for quality control decision making that improves the efficiency of the traditional decision analysis by reducing substantially the number of calculations required to solve decision problems.  For some decision problems, the proposed analysis reduces the number of calculations required to solve decision problems by more than 75%.  Some researchers provided modified decision trees (Game trees and Scenario trees) that attempt to preserve the advantages of the traditional trees while improving their efficiency.  However, these other modified decision trees may not be as efficient as the traditional analysis because they do not allow for the use of the coalescence procedure in the case of symmetrical decision problems

    Stock Picking via Nonsymmetrically Pruned Binary Decision Trees

    Get PDF
    Stock picking is the field of financial analysis that is of particular interest for many professional investors and researchers. In this study stock picking is implemented via binary classification trees. Optimal tree size is believed to be the crucial factor in forecasting performance of the trees. While there exists a standard method of tree pruning, which is based on the cost-complexity tradeoff and used in the majority of studies employing binary decision trees, this paper introduces a novel methodology of nonsymmetric tree pruning called Best Node Strategy (BNS). An important property of BNS is proven that provides an easy way to implement the search of the optimal tree size in practice. BNS is compared with the traditional pruning approach by composing two recursive portfolios out of XETRA DAX stocks. Performance forecasts for each of the stocks are provided by constructed decision trees. It is shown that BNS clearly outperforms the traditional approach according to the backtesting results and the Diebold-Mariano test for statistical significance of the performance difference between two forecasting methods.decision tree, stock picking, pruning, earnings forecasting, data mining

    GAMES: A new Scenario for Software and Knowledge Reuse

    Full text link
    Games are a well-known test bed for testing search algorithms and learning methods, and many authors have presented numerous reasons for the research in this area. Nevertheless, they have not received the attention they deserve as software projects. In this paper, we analyze the applicability of software and knowledge reuse in the games domain. In spite of the need to find a good evaluation function, search algorithms and interface design can be said to be the primary concerns. In addition, we will discuss the current state of the main statistical learning methods and how they can be addressed from a software engineering point of view. So, this paper proposes a reliable environment and adequate tools, necessary in order to achieve high levels of reuse in the games domain
    corecore