318 research outputs found

    Multiresolution vector quantization

    Get PDF
    Multiresolution source codes are data compression algorithms yielding embedded source descriptions. The decoder of a multiresolution code can build a source reproduction by decoding the embedded bit stream in part or in whole. All decoding procedures start at the beginning of the binary source description and decode some fraction of that string. Decoding a small portion of the binary string gives a low-resolution reproduction; decoding more yields a higher resolution reproduction; and so on. Multiresolution vector quantizers are block multiresolution source codes. This paper introduces algorithms for designing fixed- and variable-rate multiresolution vector quantizers. Experiments on synthetic data demonstrate performance close to the theoretical performance limit. Experiments on natural images demonstrate performance improvements of up to 8 dB over tree-structured vector quantizers. Some of the lessons learned through multiresolution vector quantizer design lend insight into the design of more sophisticated multiresolution codes

    A constrained joint source/channel coder design and vector quantization of nonstationary sources

    Get PDF
    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm

    Some new developments in image compression

    Get PDF
    This study is divided into two parts. The first part involves an investigation of near-lossless compression of digitized images using the entropy-coded DPCM method with a large number of quantization levels. Through the investigation, a new scheme that combines both lossy and lossless DPCM methods into a common framework is developed. This new scheme uses known results on the design of predictors and quantizers that incorporate properties of human visual perception. In order to enhance the compression performance of the scheme, an adaptively generated source model with multiple contexts is employed for the coding of the quantized prediction errors, rather than a memoryless model as in the conventional DPCM method. Experiments show that the scheme can provide compression in the range from 4 to 11 with a peak SNR of about 50 dB for 8-bit medical images. Also, the use of multiple contexts is found to improve compression performance by about 25% to 35%;The second part of the study is devoted to the problem of lossy image compression using tree-structured vector quantization. As a result of the study, a new design method for codebook generation is developed together with four different implementation algorithms. In the new method, an unbalanced tree-structured vector codebook is designed in a greedy fashion under the constraint of rate-distortion trade-off which can then be used to implement a variable-rate compression system. From experiments, it is found that the new method can achieve a very good rate-distortion performance while being computationally efficient. Also, due to the tree-structure of the codebook, the new method is amenable to progressive transmission applications

    Image coding using entropy-constrained residual vector quantization

    Get PDF
    The residual vector quantization (RVQ) structure is exploited to produce a variable length codeword RVQ. Necessary conditions for the optimality of this RVQ are presented, and a new entropy-constrained RVQ (ECRVQ) design algorithm is shown to be very effective in designing RVQ codebooks over a wide range of bit rates and vector sizes. The new EC-RVQ has several important advantages. It can outperform entropy-constrained VQ (ECVQ) in terms of peak signal-to-noise ratio (PSNR), memory, and computation requirements. It can also be used to design high rate codebooks and codebooks with relatively large vector sizes. Experimental results indicate that when the new EC-RVQ is applied to image coding, very high quality is achieved at relatively low bit rates

    Speech coding at medium bit rates using analysis by synthesis techniques

    Get PDF
    Speech coding at medium bit rates using analysis by synthesis technique

    Signal Processing Research Program

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1, an introduction and reports on fourteen research projects.Charles S. Draper Laboratory Contract DL-H-404158U.S. Navy - Office of Naval Research Grant N00014-89-J-1489National Science Foundation Grant MIP 87-14969Battelle LaboratoriesTel-Aviv University, Department of Electronic SystemsU.S. Army Research Office Contract DAAL03-86-D-0001The Federative Republic of Brazil ScholarshipSanders Associates, Inc.Bell Northern Research, Ltd.Amoco Foundation FellowshipGeneral Electric FellowshipNational Science Foundation FellowshipU.S. Air Force - Office of Scientific Research FellowshipU.S. Navy - Office of Naval Research Grant N00014-85-K-0272Natural Science and Engineering Research Council of Canada - Science and Technology Scholarshi

    Time and frequency domain algorithms for speech coding

    Get PDF
    The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulations) of research into various efficient (time and frequency domain) speech encoders operating at a transmission bit rate of 16 Kbps. In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) systems employing both forward and backward adaptive prediction were examined. A number of algorithms were proposed and evaluated, including several variants of the Stochastic Approximation Predictor (SAP). A Backward Block Adaptive (BBA) predictor was also developed and found to outperform the conventional stochastic methods, even though its complexity in terms of signal processing requirements is lower. A simplified Adaptive Predictive Coder (APC) employing a single tap pitch predictor considered next provided a slight improvement in performance over ADPCM, but with rather greater complexity. The ultimate test of any speech coding system is the perceptual performance of the received speech. Recent research has indicated that this may be enhanced by suitable control of the noise spectrum according to the theory of auditory masking. Various noise shaping ADPCM configurations were examined, and it was demonstrated that a proposed pre-/post-filtering arrangement which exploits advantageously the predictor-quantizer interaction, leads to the best subjective performance in both forward and backward prediction systems. Adaptive quantization is instrumental to the performance of ADPCM systems. Both the forward adaptive quantizer (AQF) and the backward oneword memory adaptation (AQJ) were examined. In addition, a novel method of decreasing quantization noise in ADPCM-AQJ coders, which involves the application of correction to the decoded speech samples, provided reduced output noise across the spectrum, with considerable high frequency noise suppression. More powerful (and inevitably more complex) frequency domain speech coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder (SBC) offer good quality speech at 16 Kbps. To reduce complexity and coding delay, whilst retaining the advantage of sub-band coding, a novel transform based split-band coder (TSBC) was developed and found to compare closely in performance with the SBC. To prevent the heavy side information requirement associated with a large number of bands in split-band coding schemes from impairing coding accuracy, without forgoing the efficiency provided by adaptive bit allocation, a method employing AQJs to code the sub-band signals together with vector quantization of the bit allocation patterns was also proposed. Finally, 'pipeline' methods of bit allocation and step size estimation (using the Fast Fourier Transform (FFT) on the input signal) were examined. Such methods, although less accurate, are nevertheless useful in limiting coding delay associated with SRC schemes employing Quadrature Mirror Filters (QMF)
    • …
    corecore