2 research outputs found

    A new method for single-epoch ambiguity resolution with indoor pseudolite positioning

    No full text
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Ambiguity resolution (AR) is crucial for high-precision indoor pseudolite positioning. Due to the existing characteristics of the pseudolite positioning system, such as the geometry structure of the stationary pseudolite which is consistently invariant, the indoor signal is easy to interrupt and the first order linear truncation error cannot be ignored, and a new AR method based on the idea of the ambiguity function method (AFM) is proposed in this paper. The proposed method is a single-epoch and nonlinear method that is especially well-suited for indoor pseudolite positioning. Considering the very low computational efficiency of conventional AFM, we adopt an improved particle swarm optimization (IPSO) algorithm to search for the best solution in the coordinate domain, and variances of a least squares adjustment is conducted to ensure the reliability of the solving ambiguity. Several experiments, including static and kinematic tests, are conducted to verify the validity of the proposed AR method. Numerical results show that the IPSO significantly improved the computational efficiency of AFM and has a more elaborate search ability compared to the conventional grid searching method. For the indoor pseudolite system, which had an initial approximate coordinate precision better than 0.2 m, the AFM exhibited good performances in both static and kinematic tests. With the corrected ambiguity gained from our proposed method, indoor pseudolite positioning can achieve centimeter-level precision using a low-cost single-frequency software receiver

    Precise indoor positioning with pseudolites : iRTK, iPPP and iPPP-RTK

    Full text link
    A pseudolite (PL) is a ground-based positioning system that offers flexible deployment and accurate “orbits”. The PL system can carry on the role of the GNSS to provide precise positioning for indoor users. However, there are some unusual challenges that seriously affect the performance of a PL system in precise indoor positioning. To raise PL-based positioning accuracy up to the centimeter level or higher, the use of the PL carrier phase measurement with ambiguity resolution is a unique consideration. The PL phase ambiguities are also contaminated by clock bias, multipath errors, and cycle clips. Their existence destroys the integer nature of ambiguity and impedes the pursuit of further accuracy improvement. The major contributions in this research for addressing the above-mentioned challenging issues are specified as follows: 1. The ground-based AR methods are discussed. The impact of ground-based geometry on indoor AR is researched, and the influence of linearization error is also investigated. An efficient PL-based AR method is studied and verified in the balance of gaining convenience and avoiding linearization impact. 2. The clock bias between PL transmitters can be properly handled in a way that time synchronization can be achieved with a transmitter-only PL system at low cost and simplicity. Therefore, the PL-based the ambiguities are able to be fixed to correct integers, and centimeter-level indoor precise positioning can be reliably achieved. In addition, the proposed way for time synchronization is also applicable for other ground-based systems for precise positioning purposes. 3. The stochastic model for mitigation of indoor multipath and NLOS is investigated. The experimental results demonstrate that the proposed stochastic model is superior to other existing models in indoor multipath mitigation as it is competent to suppress the multipath errors mainly caused by multipath to the smallest in both static and kinematic results, respectively. Moreover, it is also verified to be efficient for NLOS mitigation. With the proposed new stochastic model, precise point positioning is confidently expected indoors. 4. The methods for PL-based cycle slips are extensively studied and discussed. Numerical results indicate that the integer-cycle slips can be efficiently and accurately detected and corrected. The concern about PL-based cycle slip is minimized, the reliability and sustainability of PL-based precise indoor positioning can be promised
    corecore