1,119 research outputs found

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Polynomial Transforms Based on Induction

    Full text link
    A polynomial transform is the multiplication of an input vector x\in\C^n by a matrix \PT_{b,\alpha}\in\C^{n\times n}, whose (k,β„“)(k,\ell)-th element is defined as pβ„“(Ξ±k)p_\ell(\alpha_k) for polynomials p_\ell(x)\in\C[x] from a list b={p0(x),…,pnβˆ’1(x)}b=\{p_0(x),\dots,p_{n-1}(x)\} and sample points \alpha_k\in\C from a list Ξ±={Ξ±0,…,Ξ±nβˆ’1}\alpha=\{\alpha_0,\dots,\alpha_{n-1}\}. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. Important examples include the discrete Fourier and cosine transforms. In this paper we introduce a novel technique to derive fast algorithms for polynomial transforms. The technique uses the relationship between polynomial transforms and the representation theory of polynomial algebras. Specifically, we derive algorithms by decomposing the regular modules of these algebras as a stepwise induction. As an application, we derive novel O(nlog⁑n)O(n\log{n}) general-radix algorithms for the discrete Fourier transform and the discrete cosine transform of type 4.Comment: 19 pages. Submitted to SIAM Journal on Matrix Analysis and Application

    On Polynomial Multiplication in Chebyshev Basis

    Full text link
    In a recent paper Lima, Panario and Wang have provided a new method to multiply polynomials in Chebyshev basis which aims at reducing the total number of multiplication when polynomials have small degree. Their idea is to use Karatsuba's multiplication scheme to improve upon the naive method but without being able to get rid of its quadratic complexity. In this paper, we extend their result by providing a reduction scheme which allows to multiply polynomial in Chebyshev basis by using algorithms from the monomial basis case and therefore get the same asymptotic complexity estimate. Our reduction allows to use any of these algorithms without converting polynomials input to monomial basis which therefore provide a more direct reduction scheme then the one using conversions. We also demonstrate that our reduction is efficient in practice, and even outperform the performance of the best known algorithm for Chebyshev basis when polynomials have large degree. Finally, we demonstrate a linear time equivalence between the polynomial multiplication problem under monomial basis and under Chebyshev basis
    • …
    corecore