17,135 research outputs found

    Modeling of Facial Aging and Kinship: A Survey

    Full text link
    Computational facial models that capture properties of facial cues related to aging and kinship increasingly attract the attention of the research community, enabling the development of reliable methods for age progression, age estimation, age-invariant facial characterization, and kinship verification from visual data. In this paper, we review recent advances in modeling of facial aging and kinship. In particular, we provide an up-to date, complete list of available annotated datasets and an in-depth analysis of geometric, hand-crafted, and learned facial representations that are used for facial aging and kinship characterization. Moreover, evaluation protocols and metrics are reviewed and notable experimental results for each surveyed task are analyzed. This survey allows us to identify challenges and discuss future research directions for the development of robust facial models in real-world conditions

    Facial age estimation using BSIF and LBP

    Full text link
    Human face aging is irreversible process causing changes in human face characteristics such us hair whitening, muscles drop and wrinkles. Due to the importance of human face aging in biometrics systems, age estimation became an attractive area for researchers. This paper presents a novel method to estimate the age from face images, using binarized statistical image features (BSIF) and local binary patterns (LBP)histograms as features performed by support vector regression (SVR) and kernel ridge regression (KRR). We applied our method on FG-NET and PAL datasets. Our proposed method has shown superiority to that of the state-of-the-art methods when using the whole PAL database.Comment: 5 pages, 8 figure

    Deep Boosting: Joint Feature Selection and Analysis Dictionary Learning in Hierarchy

    Full text link
    This work investigates how the traditional image classification pipelines can be extended into a deep architecture, inspired by recent successes of deep neural networks. We propose a deep boosting framework based on layer-by-layer joint feature boosting and dictionary learning. In each layer, we construct a dictionary of filters by combining the filters from the lower layer, and iteratively optimize the image representation with a joint discriminative-generative formulation, i.e. minimization of empirical classification error plus regularization of analysis image generation over training images. For optimization, we perform two iterating steps: i) to minimize the classification error, select the most discriminative features using the gentle adaboost algorithm; ii) according to the feature selection, update the filters to minimize the regularization on analysis image representation using the gradient descent method. Once the optimization is converged, we learn the higher layer representation in the same way. Our model delivers several distinct advantages. First, our layer-wise optimization provides the potential to build very deep architectures. Second, the generated image representation is compact and meaningful. In several visual recognition tasks, our framework outperforms existing state-of-the-art approaches

    Improved graph-based SFA: Information preservation complements the slowness principle

    Full text link
    Slow feature analysis (SFA) is an unsupervised-learning algorithm that extracts slowly varying features from a multi-dimensional time series. A supervised extension to SFA for classification and regression is graph-based SFA (GSFA). GSFA is based on the preservation of similarities, which are specified by a graph structure derived from the labels. It has been shown that hierarchical GSFA (HGSFA) allows learning from images and other high-dimensional data. The feature space spanned by HGSFA is complex due to the composition of the nonlinearities of the nodes in the network. However, we show that the network discards useful information prematurely before it reaches higher nodes, resulting in suboptimal global slowness and an under-exploited feature space. To counteract these problems, we propose an extension called hierarchical information-preserving GSFA (HiGSFA), where information preservation complements the slowness-maximization goal. We build a 10-layer HiGSFA network to estimate human age from facial photographs of the MORPH-II database, achieving a mean absolute error of 3.50 years, improving the state-of-the-art performance. HiGSFA and HGSFA support multiple-labels and offer a rich feature space, feed-forward training, and linear complexity in the number of samples and dimensions. Furthermore, HiGSFA outperforms HGSFA in terms of feature slowness, estimation accuracy and input reconstruction, giving rise to a promising hierarchical supervised-learning approach.Comment: 40 pages, 9 figures, 9 tables, submitted to Pattern Recognitio

    Face Alignment Robust to Pose, Expressions and Occlusions

    Full text link
    We propose an Ensemble of Robust Constrained Local Models for alignment of faces in the presence of significant occlusions and of any unknown pose and expression. To account for partial occlusions we introduce, Robust Constrained Local Models, that comprises of a deformable shape and local landmark appearance model and reasons over binary occlusion labels. Our occlusion reasoning proceeds by a hypothesize-and-test search over occlusion labels. Hypotheses are generated by Constrained Local Model based shape fitting over randomly sampled subsets of landmark detector responses and are evaluated by the quality of face alignment. To span the entire range of facial pose and expression variations we adopt an ensemble of independent Robust Constrained Local Models to search over a discretized representation of pose and expression. We perform extensive evaluation on a large number of face images, both occluded and unoccluded. We find that our face alignment system trained entirely on facial images captured "in-the-lab" exhibits a high degree of generalization to facial images captured "in-the-wild". Our results are accurate and stable over a wide spectrum of occlusions, pose and expression variations resulting in excellent performance on many real-world face datasets

    BridgeNet: A Continuity-Aware Probabilistic Network for Age Estimation

    Full text link
    Age estimation is an important yet very challenging problem in computer vision. Existing methods for age estimation usually apply a divide-and-conquer strategy to deal with heterogeneous data caused by the non-stationary aging process. However, the facial aging process is also a continuous process, and the continuity relationship between different components has not been effectively exploited. In this paper, we propose BridgeNet for age estimation, which aims to mine the continuous relation between age labels effectively. The proposed BridgeNet consists of local regressors and gating networks. Local regressors partition the data space into multiple overlapping subspaces to tackle heterogeneous data and gating networks learn continuity aware weights for the results of local regressors by employing the proposed bridge-tree structure, which introduces bridge connections into tree models to enforce the similarity between neighbor nodes. Moreover, these two components of BridgeNet can be jointly learned in an end-to-end way. We show experimental results on the MORPH II, FG-NET and Chalearn LAP 2015 datasets and find that BridgeNet outperforms the state-of-the-art methods.Comment: CVPR 201

    A Hierarchical Probabilistic Model for Facial Feature Detection

    Full text link
    Facial feature detection from facial images has attracted great attention in the field of computer vision. It is a nontrivial task since the appearance and shape of the face tend to change under different conditions. In this paper, we propose a hierarchical probabilistic model that could infer the true locations of facial features given the image measurements even if the face is with significant facial expression and pose. The hierarchical model implicitly captures the lower level shape variations of facial components using the mixture model. Furthermore, in the higher level, it also learns the joint relationship among facial components, the facial expression, and the pose information through automatic structure learning and parameter estimation of the probabilistic model. Experimental results on benchmark databases demonstrate the effectiveness of the proposed hierarchical probabilistic model.Comment: IEEE Conference on Computer Vision and Pattern Recognition, 201

    Dual-reference Face Retrieval

    Full text link
    Face retrieval has received much attention over the past few decades, and many efforts have been made in retrieving face images against pose, illumination, and expression variations. However, the conventional works fail to meet the requirements of a potential and novel task --- retrieving a person's face image at a specific age, especially when the specific 'age' is not given as a numeral, i.e. 'retrieving someone's image at the similar age period shown by another person's image'. To tackle this problem, we propose a dual reference face retrieval framework in this paper, where the system takes two inputs: an identity reference image which indicates the target identity and an age reference image which reflects the target age. In our framework, the raw images are first projected on a joint manifold, which preserves both the age and identity locality. Then two similarity metrics of age and identity are exploited and optimized by utilizing our proposed quartet-based model. The experiments show promising results, outperforming hierarchical methods.Comment: Accepted at AAAI 201

    Facial Landmark Detection with Tweaked Convolutional Neural Networks

    Full text link
    We present a novel convolutional neural network (CNN) design for facial landmark coordinate regression. We examine the intermediate features of a standard CNN trained for landmark detection and show that features extracted from later, more specialized layers capture rough landmark locations. This provides a natural means of applying differential treatment midway through the network, tweaking processing based on facial alignment. The resulting Tweaked CNN model (TCNN) harnesses the robustness of CNNs for landmark detection, in an appearance-sensitive manner without training multi-part or multi-scale models. Our results on standard face landmark detection and face verification benchmarks show TCNN to surpasses previously published performances by wide margins.Comment: First two authors had joint first authorship / equal contributio

    Deep Convolutional Neural Network for Age Estimation based on VGG-Face Model

    Full text link
    Automatic age estimation from real-world and unconstrained face images is rapidly gaining importance. In our proposed work, a deep CNN model that was trained on a database for face recognition task is used to estimate the age information on the Adience database. This paper has three significant contributions in this field. (1) This work proves that a CNN model, which was trained for face recognition task, can be utilized for age estimation to improve performance; (2) Over fitting problem can be overcome by employing a pretrained CNN on a large database for face recognition task; (3) Not only the number of training images and the number subjects in a training database effect the performance of the age estimation model, but also the pre-training task of the employed CNN determines the performance of the model.Comment: 8 pages, 2 figure
    • …
    corecore