24,407 research outputs found

    Soft fluidic rotary actuator with improved actuation properties

    Get PDF
    The constantly increasing amount of machines operating in the vicinity of humans makes it necessary to rethink the design approach for such machines to ensure that they are safe when interacting with humans. Traditional mechanisms are rigid and heavy and as such considered unsuitable, even dangerous when a controlled physical contact with humans is desired. A huge improvement in terms of safe human-robot interaction has been achieved by a radically new approach to robotics - soft material robotics. These new robots are made of compliant materials that render them safe when compared to the conventional rigid-link robots. This undeniable advantage of compliance and softness is paired with a number of drawbacks. One of them is that a complex and sophisticated controller is required to move a soft robot into the desired positions or along a desired trajectory, especially with external forces being present. In this paper we propose an improved soft fluidic rotary actuator composed of silicone rubber and fiber-based reinforcement. The actuator is cheap and easily manufactured providing near linear actuation properties when compared to pneumatic actuators presented elsewhere. The paper presents the actuator design, manufacturing process and a mathematical model of the actuator behavior as well as an experimental validation of the model. Four different actuator types are compared including a square-shaped and three differently reinforced cylindrical actuators

    Modeling and design of energy efficient variable stiffness actuators

    Get PDF
    In this paper, we provide a port-based mathematical framework for analyzing and modeling variable stiffness actuators. The framework provides important insights in the energy requirements and, therefore, it is an important tool for the design of energy efficient variable stiffness actuators. Based on new insights gained from this approach, a novel conceptual actuator is presented. Simulations show that the apparent output stiffness of this actuator can be dynamically changed in an energy efficient way

    The Effects of the Environment and Linear Actuators on Robot Morphologies

    Full text link
    The field of evolutionary robotics uses principles of natural evolution to design robots. In this paper, we study the effect of adding a new module inspired by the skeletal muscle to the existing RoboGen framework: the linear actuator. Additionally, we investigate how robots evolved in a plain environment differ from robots evolved in a rough environment. We consider the task of directed locomotion for comparing evolved robot morphologies. The results show that the addition of the linear actuator does not have a significant impact on the performance and morphologies of robots evolved in a plain environment. However, we find significant differences in the morphologies of robots evolved in a plain environment and robots evolved in a rough environment. We find that more complex behavior and morphologies emerge when we change the terrain of the environment

    Multiple configuration shell-core structured robotic manipulator with interchangeable mechatronic joints : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Engineering in Mechatronics at Massey University, Turitea Campus, Palmerston North, New Zealand

    Get PDF
    With the increase of robotic technology utilised throughout industry, the need for skilled labour in this area has increased also. As a result, education dealing with robotics has grown at both the high-school and tertiary educational level. Despite the range of pedagogical robots currently on the market, there seems to be a low variety of these systems specifically related to the types of robotic manipulator arms popular for industrial applications. Furthermore, a fixed-arm system is limited to only serve as an educational supplement for that specific configuration and therefore cannot demonstrate more than one of the numerous industrial-type robotic arms. The Shell-Core structured robotic manipulator concept has been proposed to improve the quality and variety of available pedagogical robotic arm systems on the market. This is achieved by the reconfigurable nature of the concept, which incorporates shell and core structural units to make the construction of at least 5 mainstream industrial arms possible. The platform will be suitable, but not limited to use within the educational robotics industry at high-school and higher educational levels and may appeal to hobbyists. Later dubbed SMILE (Smart Manipulator with Interchangeable Links and Effectors), the system utilises core units to provide either rotational or linear actuation in a single plane. A variety of shell units are then implemented as the body of the robotic arm, serving as appropriate offsets to achieve the required configuration. A prototype consisting of a limited number of ‘building blocks’ was developed for proof-of-concept, found capable of achieving several of the proposed configurations. The outcome of this research is encouraging, with a Massey patent search confirming the unique features of the proposed concept. The prototype system is an economic, easy to implement, plug and play, and multiple-configuration robotic manipulator, suitable for various applications
    • …
    corecore